Emergence of Bias During the Synthesis and Amplification of cDNA for scRNA-seq

  • Qiankun Luo
  • Hui Zhang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)


The advent of single-cell omics technology has promoted our understanding of the genomic, epigenomic, and transcriptomic heterogeneity in individual cells. Compared to traditional sequencing studies using bulk cells, single-cell transcriptome technology is naturally more dynamic for in depth analysis of genomic variation resulting from cell division and is useful in unraveling the regulatory mechanisms of gene networks in many diseases. However, there are still some limitations of current single-cell RNA sequencing (scRNA-seq) protocols. Biases that arise during the RNA reverse transcription and cDNA pre-amplification steps are the most common problems and play pivotal roles in limiting the quantitative accuracy of scRNA-seq. In this review, we will describe how these biases emerge and impact scRNA-seq protocols. Moreover, we will introduce several current and convenient modified scRNA-seq methods that allow for bias to be decreased and estimated.


Amplification Single-cell Transcriptomic Technical noise 


Conflicts of Interest Statement

Qiankun Luo and Hui Zhang have no conflicts of interest.


  1. 1.
    Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630CrossRefPubMedGoogle Scholar
  2. 2.
    Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17(3):329–340CrossRefPubMedGoogle Scholar
  3. 3.
    Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, Pilarski LM (2017) Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol 33(2):83–97. PMID: 27761761CrossRefPubMedGoogle Scholar
  4. 4.
    Wang W, Zhu B, Wang X (2017 Oct) Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol 33(5):423–427. Scholar
  5. 5.
    Deng Q, Ramskold D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343(6167):193–196CrossRefPubMedGoogle Scholar
  6. 6.
    Wang W, Wang X (2017) Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol 33(3):207–210. PMID: 28474250CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Treutlein B, Brownfield DG, Wu AR, Neff NF et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Grün D, Lyubimova A, Kester L, Wiebrands K et al (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525(7568):251–255CrossRefPubMedGoogle Scholar
  9. 9.
    Wang W, Gao D, Wang X (2018 Feb) Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol 34(1):1–6. Scholar
  10. 10.
    Shalek AK, Satija R, Shuga J, Trombetta JJ et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505):363–369CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang DC, Wang W, Zhu B, Wang X (2018 Jan 6) Lung cancer heterogeneity and new strategies for drug therapy. Annu Rev Pharmacol Toxicol 58:531–546. Scholar
  13. 13.
    Streets AM, Zhang X, Cao C, Pang Y et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci U S A 111(19):7048–7053CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhu Z, Qiu S, Shao K, Hou Y (2017) Progress and challenges of sequencing and analyzing circulating tumor cells. Cell Biol Toxicol
  15. 15.
    Klein AM, Mazutis L, Akartuna I, Tallapragada N et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58(4):610–620CrossRefPubMedGoogle Scholar
  17. 17.
    Ponten F, Gry M, Fagerberg L, Lundberg E, Asplund A et al (2009) A global view of protein expression in human cells, tissues, and organs. Mol Syst Biol 5:337CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen Z, Pan J, Jia Y, Li D, Min Z, Su X, Yuan H, Shen G, Cao S, Zhu L, Wang X (2017 Feb) Effect of memory CD4+ T cells’ signal transducer and activator of transcription (STATs) functional shift on cytokine-releasing properties in asthma. Cell Biol Toxicol 33(1):27–39. Scholar
  19. 19.
    Lee JH, Daugharthy ER, Scheiman J, Kalhol R, Ferrante TC et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10(3):442–458CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33(5):495–502CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Krishnaswami SR, Grindberg RV, Novotny M, Venepally P et al (2016) Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 11(3):499–524CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X et al (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10(11):1093–1095CrossRefPubMedGoogle Scholar
  23. 23.
    Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16(3):133–145CrossRefPubMedGoogle Scholar
  24. 24.
    Islam S, Zeisel A, Joost S, La Manno G, Zajac P et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11(2):163–166CrossRefPubMedGoogle Scholar
  25. 25.
    He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG et al (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 7(10):807–812CrossRefPubMedGoogle Scholar
  26. 26.
    Sasagawa Y, Nikaido I, Hayashi T et al (2013) Quartz-seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 14(4):R31CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nakamura T, Yabuta Y, Okamoto I, Aramaki S, Yokobayashi S et al (2015) SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res 43(9):e60CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Güell M, Yus E, Lluch-Senar M, Serrano L (2011) Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol 9(9):658–669CrossRefPubMedGoogle Scholar
  29. 29.
    Kang Y, Norris MH, Zarzycki-Siek J, Nierman WC, Donachie SP et al (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res 21(6):925–935CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42(14):8845–8860CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fan X, Zhang X, Wu X, Guo H, Hu Y et al (2015) Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol 16(1):148CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382CrossRefPubMedGoogle Scholar
  33. 33.
    Picelli S, Faridani OR, Björklund AK et al (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181CrossRefPubMedGoogle Scholar
  34. 34.
    Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810CrossRefPubMedGoogle Scholar
  35. 35.
    Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang F, Lao K, Surani MA (2011) Development and applications of single cell transcriptome analysis. Nat Methods 8(4 Suppl):S6–S11CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep 2(3):666–673CrossRefPubMedGoogle Scholar
  38. 38.
    Fan HC, Fu GK, Fodor SP (2015) Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347(6222):1258367CrossRefPubMedGoogle Scholar
  39. 39.
    Grün D, Kester L, van Oudenaarden A (2014) Validation of noise models for singlecell transcriptomics. Nat Methods 11(6):637–640CrossRefPubMedGoogle Scholar
  40. 40.
    Bacher R, Kendziorski C (2016) Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 17:63CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bacher R, Chu LF, Leng N, Gasch AP, Thomson JA, Stewart RM et al (2017 Jun) SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods 14(6):584–586. Scholar
  42. 42.
    Niu F, Wang DC, Lu JP, Wu W, Wang XD (2016 Sep) Potentials of single-cell biology in identification and validation of disease biomarkers. J Cell Mol Med 20(9):1789–1795CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yu Y, Tsang JC, Wang C, Clare S, Wang J, Chen X et al (2016 Nov 3) Single-cell RNA-seq identifies a PD-1hi ILC progenitor and defines its development pathway. Nature 539(7627):102–106. Scholar
  44. 44.
    Wang X (2016 Oct) New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol 32(5):359–361CrossRefPubMedGoogle Scholar
  45. 45.
    Shi L, Zhu B, Xu M, Wang X (2017 Aug 4) Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol 34:109. Scholar
  46. 46.
    Chen C, Shi L, Li Y, Wang X, Yang S (2016) Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol 32(3):169–184. PMID: 27095254CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gu J, Wang X (2016) New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol 32(1):1–3. PMID: 26874518CrossRefPubMedGoogle Scholar
  48. 48.
    Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, Xue Y, Wu D (2016) A new method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol 32(4):323–332. PMID: 27278387CrossRefPubMedGoogle Scholar
  49. 49.
    Wang L, Zhu B, Zhang M, Wang X (2017 Apr) Roles of immune microenvironment heterogeneity in therapy-associated biomarkers in lung cancer. Semin Cell Dev Biol 64:90–97CrossRefPubMedGoogle Scholar
  50. 50.
    Xu M, Wang X (2017 Aug) Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol 33(4):361–371. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Qiankun Luo
    • 1
  • Hui Zhang
    • 2
  1. 1.Department of General Surgery, Second Affiliated HospitalZhengzhou UniversityZhengzhouChina
  2. 2.Department of Science Research and Discipline ConstructionHenan Provincial People’s HospitalJinshui District, ZhengzhouChina

Personalised recommendations