The Potential Roles and Advantages of Single Cell Sequencing in the Diagnosis and Treatment of Hematological Malignancies

  • Mingyue Shi
  • Xiaoyan Dong
  • Lei Huo
  • Xiaobin Wei
  • Fang Wang
  • Kai SunEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)


Hematological malignancies (HM) are a heterogeneous group of life-threatening hematological diseases. The heterogeneity and clonal evolution of HM subpopulations are the main obstacles for precise diagnoses, risk stratification, and even targeted therapies. Standard bulk-sample genomic examinations average total mutations from multiple subpopulations and conceal the clonal diversity that may play a significant role in HM progression. Therefore, the development of novel methods that detect intra-tumor heterogeneity is critical for the discovery of novel potential therapeutic targets. The recently developed single cell sequencing (SCS) technologies can analyse genetic polymorphisms at a single cell level. SCS requires the precise isolation of single cells and amplification of their genetic material. It allows the analysis of genomic, transcriptomic, and epigenomic information in single cancer cells. SCS may also be able to monitor minimal residual disease (MRD) of HM by sequencing circulating tumor cells (CTCs) from peripheral blood. Functional heterogeneity and clonal evolution exist in acute leukemia, multiple myeloma (MM) and chronic myeloid leukemia (CML) subpopulations and have prognostic value. In this thesis, we provide an overview of SCS technologies in HM and discuss the heterogeneous genetic variation and clonal structure among subpopulations of HM. Furthermore, we aimed to shed light on the clinical applications of SCS technologies, including the development of new targeted therapies for drug-resistant or recurrent HM.


Hematological malignancies Single cell sequencing Heterogeneity Clonal evolution Precise therapy 



acute lymphoblastic leukemia


acute myeloid leukemia


chronic myeloid leukemia


circulating tumor cells


hematological malignancies


hematopoietic stem cells


leukemic stem cells


multiple myeloma


myeloproliferative neoplasms


minimal residual disease


RNA sequencing


single cell sequencing


tyrosine kinase inhibition



This study was partially supported by the National Natural Science Foundation of China (No. 81273259,No. 81471589), the Health Bureau of Henan Province, P.R. China (No. 201201005) and the Foundation and Frontier Research Grant from the Henan Provincial Science and Technology Bureau, P.R. China (No.142300410078).

Conflicts of Interest

The authors disclose that they have no relevant conflicts of interest.


  1. 1.
    Aronson SJ, Rehm HL (2015) Building the foundation for genomics in precision medicine. Nature 526:336–342CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bakker B, Taudt A, Belderbos ME, Porubsky D, Spierings DC, de Jong TV, Halsema N, Kazemier HG, Hoekstra-Wakker K, Bradley A et al (2016) Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biol 17:115CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Binder M, Rajkumar SV, Ketterling RP, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Hayman SR, Hwa YL, Zeldenrust SR et al (2016) Occurrence and prognostic significance of cytogenetic evolution in patients with multiple myeloma. Blood Cancer J 6:e401CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, Pilarski LM (2017) Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol 33:83–97CrossRefPubMedGoogle Scholar
  5. 5.
    Court CM, Ankeny JS, Sho S, Hou S, Li Q, Hsieh C, Song M, Liao X, Rochefort MM, Wainberg ZA et al (2016) Reality of single circulating tumor cell sequencing for molecular diagnostics in pancreatic Cancer. J Mol Diagn: JMD 18:688–696CrossRefPubMedGoogle Scholar
  6. 6.
    Del Giudice I, Marinelli M, Wang J, Bonina S, Messina M, Chiaretti S, Ilari C, Cafforio L, Raponi S, Mauro FR et al (2016) Inter- and intra-patient clonal and subclonal heterogeneity of chronic lymphocytic leukaemia: evidences from circulating and lymph nodal compartments. Br J Haematol 172:371–383CrossRefPubMedGoogle Scholar
  7. 7.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ebinger S, Ozdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, Dworzak M, Lutz C, Turati VA, Enver T et al (2016) Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell 30:849–862CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fakhri B, Vij R (2016) Clonal evolution in multiple myeloma. Clin Lymphoma, Myeloma Leuk 16(Suppl):S130–S134CrossRefGoogle Scholar
  10. 10.
    Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schonegger A, Klughammer J, Bock C (2015) Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep 10:1386–1397CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Garg M, Nagata Y, Kanojia D, Mayakonda A, Yoshida K, Haridas Keloth S, Zang ZJ, Okuno Y, Shiraishi Y, Chiba K et al (2015) Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood 126:2491–2501CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gawad C, Koh W, Quake SR (2014) Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci U S A 111:17947–17952CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Giustacchini A, Thongjuea S, Barkas N, Woll PS, Povinelli BJ, Booth CAG, Sopp P, Norfo R, Rodriguez-Meira A, Ashley N et al (2017) Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat Med 23:692–702CrossRefPubMedGoogle Scholar
  14. 14.
    He M, Xia J, Shehab M, Wang X (2015) The development of precision medicine in clinical practice. Clin Transl Med 4:69CrossRefPubMedGoogle Scholar
  15. 15.
    Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hughes AE, Magrini V, Demeter R, Miller CA, Fulton R, Fulton LL, Eades WC, Elliott K, Heath S, Westervelt P et al (2014) Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet 10:e1004462CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, Majeti R (2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 4:149ra118CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, Van Wier S, Blackburn PR, Baker AS, Dispenzieri A et al (2012) Clonal competition with alternating dominance in multiple myeloma. Blood 120:1067–1076CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O’Laughlin M, Fronick C, Magrini V, Demeter RT, Fulton RS et al (2014) Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25:379–392CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ, Schneider RK, Wagers AJ, Ebert BL, Regev A (2015) Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res 25:1860–1872CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kriangkum J, Motz SN, Mack T, Beiggi S, Baigorri E, Kuppusamy H, Belch AR, Johnston JB, Pilarski LM (2015) Single-cell analysis and next-generation Immuno-sequencing show that multiple clones persist in patients with chronic lymphocytic leukemia. PLoS One 10:e0137232CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Landau DA, Carter SL, Getz G, Wu CJ (2014) Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 28:34–43CrossRefPubMedGoogle Scholar
  23. 23.
    Liang J, Cai W, Sun Z (2014) Single-cell sequencing technologies: current and future. J Genet Genomics = Yi chuan xue bao 41:513–528CrossRefPubMedGoogle Scholar
  24. 24.
    Lohr JG, Kim S, Gould J, Knoechel B, Drier Y, Cotton MJ, Gray D, Birrer N, Wong B, Ha G et al (2016) Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med 8:363ra147CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G et al (2014) Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25:91–101CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM (2017) Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 14:100–113CrossRefPubMedGoogle Scholar
  27. 27.
    Mann KM, Newberg JY, Black MA, Jones DJ (2016) Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq. Nat. Biotech 34:962–972CrossRefGoogle Scholar
  28. 28.
    Mitra AK, Mukherjee UK, Harding T, Jang JS, Stessman H, Li Y, Abyzov A, Jen J, Kumar S (2016) Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors. Leukemia 30:1094–1102CrossRefPubMedGoogle Scholar
  29. 29.
    Mosna F, Capelli D, Gottardi M (2017) Minimal residual disease in acute myeloid leukemia: still a work in progress? J Clin Med 6:57CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Navin NE (2015a) Delineating cancer evolution with single-cell sequencing. Sci Transl Med 7:296fs229CrossRefGoogle Scholar
  32. 32.
    Navin NE (2015b) The first five years of single-cell cancer genomics and beyond. Genome Res 25:1499–1507CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Niemoller C, Renz N, Bleul S, Blagitko-Dorfs N, Greil C, Yoshida K, Pfeifer D, Follo M, Duyster J, Claus R et al (2016) Single cell genotyping of exome sequencing-identified mutations to characterize the clonal composition and evolution of inv(16) AML in a CBL mutated clonal hematopoiesis. Leuk Res 47:41–46CrossRefPubMedGoogle Scholar
  34. 34.
    Paguirigan AL, Smith J, Meshinchi S, Carroll M, Maley C, Radich JP (2015) Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci Transl Med 7:281re282CrossRefGoogle Scholar
  35. 35.
    Rajkumar SV (2016) Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 91:719–734CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rato S, Golumbeanu M, Telenti A, Ciuffi A (2016) Exploring viral infection using single-cell sequencing. Virus ResGoogle Scholar
  37. 37.
    Riether C, Schurch CM, Ochsenbein AF (2015) Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ 22:187–198CrossRefPubMedGoogle Scholar
  38. 38.
    Saadatpour A, Guo G, Orkin SH, Yuan GC (2014) Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol 15:525CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Saez B, Walter MJ (2017) Splicing factor gene mutations in hematologic malignancies. Blood 129:1260–1269CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sant M, Minicozzi P, Mounier M, Anderson LA, Brenner H, Holleczek B, Marcos-Gragera R, Maynadie M, Monnereau A, Osca-Gelis G et al (2014) Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study. Lancet Oncol 15:931–942CrossRefPubMedGoogle Scholar
  41. 41.
    Shastri A, Will B, Steidl U, Verma A (2017) Stem and progenitor cell alterations in myelodysplastic syndromes. Blood 129:1586–1594CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    van den Bos H, Spierings DC, Taudt AS, Bakker B, Porubsky D, Falconer E, Novoa C, Halsema N, Kazemier HG, Hoekstra-Wakker K et al (2016) Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biol 17:116CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang W, Zhu B, Wang X (2017) Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol 33:423CrossRefPubMedGoogle Scholar
  44. 44.
    Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, Chen K, Scheet P, Vattathil S, Liang H et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–160CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Warfvinge R, Geironson L, Sommarin MNE (2017) Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood 129:2384–2394CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593–597CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yan B, Hu Y, Ban KHK, Tiang Z, Ng C, Lee J, Tan W, Chiu L, Tan TW, Seah E et al (2017) Single-cell genomic profiling of acute myeloid leukemia for clinical use: a pilot study. Oncol Lett 13:1625–1630CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ye F, Huang W, Guo G (2017) Studying hematopoiesis using single-cell technologies. J Hematol Oncol 10:27CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yuan GC, Cai L, Elowitz M, Enver T, Fan G, Guo G, Irizarry R, Kharchenko P, Kim J, Orkin S et al (2017) Challenges and emerging directions in single-cell analysis. Genome Biol 18:84CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhou J, Chng WJ (2014) Identification and targeting leukemia stem cells: the path to the cure for acute myeloid leukemia. World J Stem Cells 6:473–484CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhou Y, Kanagal-Shamanna R, Zuo Z, Tang G, Medeiros LJ, Bueso-Ramos CE (2016) Advances in B-lymphoblastic leukemia: cytogenetic and genomic lesions. Ann Diagn Pathol 23:43–50CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mingyue Shi
    • 1
    • 2
  • Xiaoyan Dong
    • 1
  • Lei Huo
    • 1
  • Xiaobin Wei
    • 1
  • Fang Wang
    • 1
  • Kai Sun
    • 1
    Email author
  1. 1.Department of HematologyInstitute of Hematology, Henan Provincial People’s Hospital, Zhengzhou University People’s HospitalZhengzhouChina
  2. 2.Zhengzhou University the Academy of Medical Sciences, Zhengzhou UniversityZhengzhouChina

Personalised recommendations