Advertisement

Intracavitary Brachytherapy from 2D to 3D

  • Takafumi Toita
Chapter

Abstract

Intracavitary brachytherapy (ICBT) has played an important role as the definitive radiotherapy modality for patients with cervical cancer over the last 100 years. ICBT has been performed based on the two-dimensional (2D) planning with the use of orthogonal X-ray films for a long time. Doses are prescribed at point A according to the classical or modified Manchester systems. Recently, a dramatic shift has occurred from 2D to three-dimensional (3D) on ICBT planning. 3D-ICBT improves dose coverage of the cervical tumor while limiting overdosage of the surrounding normal organs. In this paper, we reviewed the history and clinical results of the 2D- and 3D-ICBT procedures. We also mentioned the issues and future challenges of image-guided brachytherapy (3D-IGBT) in the treatment of uterine cervical cancer.

Keywords

Uterine cervical neoplasms Radiotherapy Image-guided Intracavitary brachytherapy 

References

  1. 1.
    Cervical cancer. NCCN Clinical Practice Guidelines in Oncology. 2017. https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf. Accessed 27 Sept 2017.
  2. 2.
    Han K, Milosevic M, Fyles A, et al. Trends in the utilization of brachytherapy in cervical cancer in the United States. Int J Radiat Oncol Biol Phys. 2013;87(1):111–9.  https://doi.org/10.1016/j.ijrobp.2013.05.033.CrossRefPubMedGoogle Scholar
  3. 3.
    Gill BS, Lin JF, Krivak TC, et al. National Cancer Data Base analysis of radiation therapy consolidation modality for cervical cancer: the impact of new technological advancements. Int J Radiat Oncol Biol Phys. 2014;90(5):1083–90.  https://doi.org/10.1016/j.ijrobp.2014.07.017.CrossRefPubMedGoogle Scholar
  4. 4.
    Viswanathan AN, Erickson BA. Three-dimensional imaging in gynecologic brachytherapy: a survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys. 2010;76(1):104–9.  https://doi.org/10.1016/j.ijrobp.2009.01.043.CrossRefPubMedGoogle Scholar
  5. 5.
    Grover S, Harkenrider MM, Cho LP, et al. Image guided cervical brachytherapy: 2014 survey of the American Brachytherapy Society. Int J Radiat Oncol Biol Phys. 2016;94(3):598–604.  https://doi.org/10.1016/j.ijrobp.2015.11.024.CrossRefPubMedGoogle Scholar
  6. 6.
    Pavamani S, D’Souza DP, Portelance L, et al. Image-guided brachytherapy for cervical cancer: a Canadian Brachytherapy Group survey. Brachytherapy. 2011;10(5):345–51.  https://doi.org/10.1016/j.brachy.2010.12.004.CrossRefPubMedGoogle Scholar
  7. 7.
    Taggar AS, Phan T, Traptow L, et al. Cervical cancer brachytherapy in Canada: a focus on interstitial brachytherapy utilization. Brachytherapy. 2017;16(1):161–6.  https://doi.org/10.1016/j.brachy.2016.10.009.CrossRefPubMedGoogle Scholar
  8. 8.
    Tan LT. Implementation of image-guided brachytherapy for cervix cancer in the UK: progress update. Clin Oncol (R Coll Radiol). 2011;23(10):681–4.  https://doi.org/10.1016/j.clon.2011.07.011.CrossRefGoogle Scholar
  9. 9.
    de Boer P, Jürgenliemk-Schulz IM, Westerveld H, et al. Patterns of care survey: radiotherapy for women with locally advanced cervical cancer. Radiother Oncol. 2017;123(2):306–11.  https://doi.org/10.1016/j.radonc.2017.04.005.CrossRefPubMedGoogle Scholar
  10. 10.
    Ohno T, Toita T, Tsujino K, et al. A questionnaire-based survey on 3D image-guided brachytherapy for cervical cancer in Japan: advances and obstacles. J Radiat Res. 2015;56:897–903.  https://doi.org/10.1093/jrr/rrv047.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Toita T, Ohno T, Ikushima H et al. Current status of intracavitary brachytherapy for cervical cancer in Japan. The 30th annual meeting of the Japanese Society for Radiation Oncology, Nara, 26–27 May 2017.Google Scholar
  12. 12.
    da Silva RM, Pinezi JC, Macedo LE, et al. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil. Radiol Bras. 2014;47(3):159–64.  https://doi.org/10.1590/0100-3984.2013.1859.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Inoue T. The trail of the development of high-dose-rate brachytherapy for cervical cancer in Japan. Jpn J Clin Oncol. 2003;33:327–30.CrossRefPubMedGoogle Scholar
  14. 14.
    Arai T. Standard radiation treatment for carcinoma of the uterine cervix. Rinsho Hoshasen. 1984;29(13):1499–504.PubMedGoogle Scholar
  15. 15.
    Arai T, Nakano T, Morita S, et al. High-dose-rate remote afterloading intracavitary radiation therapy for cancer of the uterine cervix. A 20-year experience. Cancer. 1992;69(1):175–80.CrossRefPubMedGoogle Scholar
  16. 16.
    Kataoka M, Kawamura M, Nishiyama Y, et al. Results of the combination of external-beam and high-dose-rate intracavitary irradiation for patients with cervical carcinoma. Gynecol Oncol. 1992;44(1):48–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Ito H, Kutuki S, Nishiguchi I, et al. Radiotherapy for cervical cancer with high-dose rate brachytherapy correlation between tumor size, dose and failure. Radiother Oncol. 1994;31(3):240–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Nakano T, Kato S, Ohno T, et al. Long-term results of high-dose rate intracavitary brachytherapy for squamous cell carcinoma of the uterine cervix. Cancer. 2005;103:92–101.CrossRefPubMedGoogle Scholar
  19. 19.
    Nag S, Erickson B, Thomadsen B, et al. The American Brachytherapy Society recommendations for high-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2000;48:201–11.CrossRefPubMedGoogle Scholar
  20. 20.
    Teshima T, Inoue T, Ikeda H, et al. High-dose rate and low-dose rate intracavitary therapy for carcinoma of the uterine cervix. Final results of Osaka University Hospital. Cancer. 1993;72(8):2409–14.CrossRefPubMedGoogle Scholar
  21. 21.
    Hareyama M, Sakata K, Oouchi A, et al. High-dose-rate versus low-dose-rate intracavitary therapy for carcinoma of the uterine cervix: a randomized trial. Cancer. 2002;94(1):117–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Toita T, Kodaira T, Shinoda A, et al. Patterns of radiotherapy practice for patients with cervical cancer (1999–2001): patterns of care study in Japan. Int J Radiat Oncol Biol Phys. 2008;70:788–94.  https://doi.org/10.1016/j.ijrobp.2007.10.045.CrossRefPubMedGoogle Scholar
  23. 23.
    Eifel PJ. High-dose-rate brachytherapy for carcinoma of the cervix: high tech or high risk? Int J Radiat Oncol Biol Phys. 1992;24(2):383–6. discussion 387–8CrossRefPubMedGoogle Scholar
  24. 24.
    Erickson B, Eifel P, Moughan J, et al. Patterns of brachytherapy practice for patients with carcinoma of the cervix (1996–1999): a patterns of care study. Int J Radiat Oncol Biol Phys. 2005;63(4):1083–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Smith GL, Jiang J, Giordano SH, et al. Trends in the quality of treatment for patients with intact cervical cancer in the United States, 1999 through 2011. Int J Radiat Oncol Biol Phys. 2015;92(2):260–7.  https://doi.org/10.1016/j.ijrobp.2015.01.037.CrossRefPubMedGoogle Scholar
  26. 26.
    Ariga T, Toita T, Kato S, et al. Treatment outcomes of patients with FIGO Stage I/II uterine cervical cancer treated with definitive radiotherapy: a multi-institutional retrospective research study. J Radiat Res. 2015;56(5):841–8.  https://doi.org/10.1093/jrr/rrv036.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Viswanathan AN, Beriwai S, De Los Santos JF, et al. American brachytherapy society consensus guidelines for locally advanced carcinoma of the cervix. Part II: High dose-rate brachytherapy. Brachytherapy. 2012a;11:47–52.  https://doi.org/10.1016/j.brachy.2011.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    JASTRO radiotherapy guideline, 2016.Google Scholar
  29. 29.
    Perez CA, Breaux S, Madoc-Jones H, et al. Radiation therapy alone in the treatment of carcinoma of uterine cervix. I. Analysis of tumor recurrence. Cancer. 1983;51(8):1393–402.CrossRefPubMedGoogle Scholar
  30. 30.
    Perez CA, Breaux S, Bedwinek JM, et al. Radiation therapy alone in the treatment of carcinoma of the uterine cervix. II. Analysis of complications. Cancer. 1984;54(2):235–46.CrossRefPubMedGoogle Scholar
  31. 31.
    Eifel PJ, Morris M, Wharton JT, et al. The influence of tumor size and morphology on the outcome of patients with FIGO stage IB squamous cell carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1994;29(1):9–16.CrossRefPubMedGoogle Scholar
  32. 32.
    Logsdon MD, Eifel PJ. FIGO IIIB squamous cell carcinoma of the cervix: an analysis of prognostic factors emphasizing the balance between external beam and intracavitary radiation therapy. Int J Radiat Oncol Biol Phys. 1999;43(4):763–75.CrossRefPubMedGoogle Scholar
  33. 33.
    Lanciano RM, Martz K, Coia LR, et al. Tumor and treatment factors improving outcome in stage III-B cervix cancer. Int J Radiat Oncol Biol Phys. 1991;20:95–100.CrossRefPubMedGoogle Scholar
  34. 34.
    Perez CA, Fox S, Lockett MA, et al. Impact of dose in outcome of irradiation alone in carcinoma of the uterine cervix: analysis of two different methods. Int J Radiat Oncol Biol Phys. 1991;21:885–98.CrossRefPubMedGoogle Scholar
  35. 35.
    Petereit DG, Pearcey R. Literature analysis of high dose rate brachytherapy fractionation schedules in the treatment of cervical cancer: is there an optimal fractionation schedule? Int J Radiat Oncol Biol Phys. 1999;43:359–66.CrossRefPubMedGoogle Scholar
  36. 36.
    Toita T, Kato S, Niibe Y, et al. Prospective multi-institutional study of definitive radiotherapy with high-dose-rate intracavitary brachytherapy in patients with nonbulky (<4-cm) stage I and II uterine cervical cancer (JAROG0401/JROSG04-2). Int J Radiat Oncol Biol Phys. 2012a;82(1):e49–56.  https://doi.org/10.1016/j.ijrobp.2011.01.022.CrossRefPubMedGoogle Scholar
  37. 37.
    Toita T, Kitagawa R, Hamano T, et al. Phase II study of concurrent chemoradiotherapy with high-dose-rate intracavitary brachytherapy in patients with locally advanced uterine cervical cancer: efficacy and toxicity of a low cumulative radiation dose schedule. Gynecol Oncol. 2012b;126:211–6.  https://doi.org/10.1016/j.ygyno.2012.04.036.CrossRefPubMedGoogle Scholar
  38. 38.
    Toita T, Oguchi M, Ohno T, et al. Quality assurance in the prospective multi-institutional trial on definitive radiotherapy using high-dose-rate intracavitary brachytherapy for uterine cervical cancer: the individual case review. Jpn J Clin Oncol. 2009;39(12):813–9.  https://doi.org/10.1093/jjco/hyp105.CrossRefPubMedGoogle Scholar
  39. 39.
    Toita T, Kato S, Ishikura S, et al. Radiotherapy quality assurance of the Japanese Gynecologic Oncology Group study (JGOG1066): a cooperative phase II study of concurrent chemoradiotherapy for uterine cervical cancer. Int J Clin Oncol. 2011;16(4):379–86.  https://doi.org/10.1007/s10147-011-0196-4.CrossRefPubMedGoogle Scholar
  40. 40.
    Anker CJ, Cachoeira CV, Boucher KM, et al. Does the entire uterus need to be treated in cancer of the cervix? Role of adaptive brachytherapy. Int J Radiat Oncol Biol Phys. 2010;76:704–12.  https://doi.org/10.1016/j.ijrobp.2009.02.044.CrossRefPubMedGoogle Scholar
  41. 41.
    Forrest JL, Ackerman I, Barbera L, et al. Patient outcome study of concurrent chemoradiation, external beam radiotherapy, and high-dose rate brachytherapy in locally advanced carcinoma of the cervix. Int J Gynecol Cancer. 2010;20(6):1074–8.  https://doi.org/10.1111/IGC.0b013e3181e6f321.CrossRefPubMedGoogle Scholar
  42. 42.
    Potish RA, Gerbi BJ. Role of point A in the era of computerized dosimetry. Radiology. 1986;158:827–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Fenkell L, Assenholt M, Nielsen SK, et al. Parametrial boost using midline shielding results in an unpredictable dose to tumor and organs at risk in combined external beam radiotherapy and brachytherapy for locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2011;79(5):1572–9.  https://doi.org/10.1016/j.ijrobp.2010.05.031.CrossRefPubMedGoogle Scholar
  44. 44.
    ICRU, International Commission on Radiation Units and Measurement “Dose and volume specification for reporting intracavitary therapy in gynecology”. ICRU Report 38, 1985, Bethesda, MD, USA.Google Scholar
  45. 45.
    Pötter R, Knocke TH, Fellner C, et al. Definitive radiotherapy based on HDR brachytherapy with iridium 192 in uterine cervix carcinoma: report on the Vienna University Hospital findings (1993–1997) compared to the preceding period in the context of ICRU 38 recommendations. Cancer Radiother. 2000;4(2):159–72.CrossRefPubMedGoogle Scholar
  46. 46.
    Pötter R, Van Limbergen E, Gerstner N, et al. Survey of the use of the ICRU 38 in recording and reporting cervical cancer brachytherapy. Radiother Oncol. 2001;58(1):11–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Yu WS, Sagerman RH, Chung CT, et al. Anatomical relationships in intracavitary irradiation demonstrated by computed tomography. Radiology. 1982;143(2):537–41.CrossRefPubMedGoogle Scholar
  48. 48.
    Sewchand W, Prempree T, Patanaphan V, et al. Value of multi-planar CT images in interactive dosimetry planning of intracavitary therapy. Int J Radiat Oncol Biol Phys. 1982;8(2):295–301.CrossRefPubMedGoogle Scholar
  49. 49.
    Mizoe J. Analysis of the dose-volume histogram in uterine cervical cancer by diagnostic CT. Strahlenther Onkol. 1990;166(4):279–84.PubMedGoogle Scholar
  50. 50.
    Terahara A, Nakano T, Ishikawa A, et al. Dose-volume histogram analysis of high dose rate intracavitary brachytherapy for uterine cervix cancer. Int J Radiat Oncol Biol Phys. 1996;35(3):549–54.CrossRefPubMedGoogle Scholar
  51. 51.
    Nakano T, Arai T, Gomi H, et al. Clinical evaluation of the MR imaging for radiotherapy of uterine carcinoma. J Jpn Radiol Soc. 1987;47:1181–8.Google Scholar
  52. 52.
    Ling CC, Schell MC, Working KR, et al. CT-assisted assessment of bladder and rectum dose in gynecological implants. Int J Radiat Oncol Biol Phys. 1987;13(10):1577–82.CrossRefPubMedGoogle Scholar
  53. 53.
    Kapp KS, Stuecklschweiger GF, Kapp DS, et al. Dosimetry of intracavitary placements for uterine and cervical carcinoma: results of orthogonal film, TLD, and CT-assisted techniques. Radiother Oncol. 1992;24:137–46.CrossRefPubMedGoogle Scholar
  54. 54.
    Schoeppel SL, LaVigne ML, Martel MK, et al. Three-dimensional treatment planning of intracavitary gynecologic implants: analysis of ten cases and implications for dose specification. Int J Radiat Oncol Biol Phys. 1994;28:277–83.CrossRefPubMedGoogle Scholar
  55. 55.
    Tanderup K, Nielsen SK, Nyvang GB, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94(2):173–80.  https://doi.org/10.1016/j.radonc.2010.01.001.CrossRefPubMedGoogle Scholar
  56. 56.
    Nag S, Cardenes H, Chang S, et al. Image-Guided Brachytherapy Working Group. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group. Int J Radiat Oncol Biol Phys. 2004;60(4):1160–72.CrossRefPubMedGoogle Scholar
  57. 57.
    Haie-Meder C, Pötter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.CrossRefPubMedGoogle Scholar
  58. 58.
    Pötter R, Haie-Meder C, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.CrossRefPubMedGoogle Scholar
  59. 59.
    Dimopoulos JC, Petrow P, Tanderup K, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol. 2012;103(1):113–22.  https://doi.org/10.1016/j.radonc.2011.12.024.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tan LT, Coles CE, Hart C, et al. Clinical impact of computed tomography-based image-guided brachytherapy for cervix cancer using the tandem-ring applicator—the Addenbrooke’s experience. Clin Oncol (R Coll Radiol). 2009;21:175–82.  https://doi.org/10.1016/j.clon.2008.12.001.CrossRefGoogle Scholar
  61. 61.
    Kang HC, Shin KH, Park SY, et al. 3D CT-based high-dose-rate brachytherapy for cervical cancer: clinical impact on late rectal bleeding and local control. Radiother Oncol. 2010;97:507–13.  https://doi.org/10.1016/j.radonc.2010.10.002.CrossRefPubMedGoogle Scholar
  62. 62.
    Charra-Brunaud C, Harter V, Delannes M, et al. Impact of 3D image based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol. 2012;103:305–13.  https://doi.org/10.1016/j.radonc.2012.04.007.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tharavichitkul E, Chakrabandhu S, Wanwilairat S, et al. Intermediate-term results of image-guided brachytherapy and high-technology external beam radiotherapy in cervical cancer: Chiang Mai University experience. Gynecol Oncol. 2013;130(1):81–5.  https://doi.org/10.1016/j.ygyno.2013.04.018.CrossRefPubMedGoogle Scholar
  64. 64.
    Lindegaard JC, Fokdal LU, Nielsen S, et al. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol. 2013;52(7):1510–9.  https://doi.org/10.3109/0284186X.2013.818253.CrossRefPubMedGoogle Scholar
  65. 65.
    Nomden CN, de Leeuw AA, Roesink JM, et al. Clinical outcome and dosimetric parameters of chemo-radiation including MRI guided adaptive brachytherapy with tandem-ovoid applicators for cervical cancer patients: a single institution experience. Radiother Oncol. 2013;107(1):69–74.  https://doi.org/10.1016/j.radonc.2013.04.006.CrossRefPubMedGoogle Scholar
  66. 66.
    Murakami N, Kasamatsu T, Wakita A, et al. CT based three dimensional dose–volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer. BMC Cancer. 2014;14:447.  https://doi.org/10.1186/1471-2407-14-447.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rijkmans EC, Nout RA, Rutten IH, et al. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol Oncol. 2014;135:231–8.  https://doi.org/10.1016/j.ygyno.2014.08.027.CrossRefPubMedGoogle Scholar
  68. 68.
    Gill BS, Kim H, Houser CJ, et al. MRI-guided high-dose-rate intracavitary brachytherapy for treatment of cervical cancer: the University of Pittsburgh experience. Int J Radiat Oncol Biol Phys. 2015;91:540–7.  https://doi.org/10.1016/j.ijrobp.2014.10.053.CrossRefPubMedGoogle Scholar
  69. 69.
    Tinkle CL, Weinberg V, Chen LM, et al. Inverse planned high-dose-rate brachytherapy for locoregionally advanced cervical cancer: 4-year outcomes. Int J Radiat Oncol Biol Phys. 2015;92(5):1093–100.  https://doi.org/10.1016/j.ijrobp.2015.04.018.CrossRefPubMedGoogle Scholar
  70. 70.
    Simpson DR, Scanderbeg DJ, Carmona R, et al. Clinical outcomes of computed tomography-based volumetric brachytherapy planning for cervical cancer. Int J Radiat Oncol Biol Phys. 2015;93:150–7.  https://doi.org/10.1016/j.ijrobp.2015.04.043.CrossRefPubMedGoogle Scholar
  71. 71.
    Lakosi F, de Cuypere M, Viet Nguyen P, et al. Clinical efficacy and toxicity of radio-chemotherapy and magnetic resonance imaging-guided brachytherapy for locally advanced cervical cancer patients: a mono-institutional experience. Acta Oncol. 2015;54(9):1558–66.  https://doi.org/10.3109/0284186X.2015.1062542.CrossRefPubMedGoogle Scholar
  72. 72.
    Zolciak-Siwinska A, Gruszczynska E, Bijok M, et al. Computed tomography-planned high-dose-rate brachytherapy for treating uterine cervical cancer. Int J Radiat Oncol Biol Phys. 2016;96:87–92.  https://doi.org/10.1016/j.ijrobp.2016.04.025.CrossRefPubMedGoogle Scholar
  73. 73.
    Ribeiro I, Janssen H, De Brabandere M, et al. Long term experience with 3D image guided brachytherapy and clinical outcome in cervical cancer patients. Radiother Oncol. 2016;120:447–54.  https://doi.org/10.1016/j.radonc.2016.04.016.CrossRefPubMedGoogle Scholar
  74. 74.
    Sturdza A, Pötter R, Fokdal LU, et al. Image guided brachytherapy in locally advanced cervical cancer: improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol. 2016;120:428–33.  https://doi.org/10.1016/j.radonc.2016.03.011.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ohno T, Noda SE, Okonogi N, et al. In-room computed tomography-based brachytherapy for uterine cervical cancer: results of a 5-year retrospective study. J Radiat Res. 2017a;58(4):543–51.  https://doi.org/10.1093/jrr/rrw121.CrossRefPubMedGoogle Scholar
  76. 76.
    Kusada T, Toita T, Ariga T, et al. Computed tomography-based image-guided brachytherapy for cervical cancer: correlation between dose-volume parameters and clinical outcomes. J Radiat Res. 2018;59(1):67–76.CrossRefPubMedGoogle Scholar
  77. 77.
    Pötter R, Georg P, Dimopoulos JC, et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol. 2011;100(1):116–23.  https://doi.org/10.1016/j.radonc.2011.07.012.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Dimopoulos JC, Lang S, Kirisits C, et al. Dose-volume histogram parameters and local tumor control in magnetic resonance image-guided cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2009a;75(1):56–63.  https://doi.org/10.1016/j.ijrobp.2008.10.033.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Dimopoulos JC, Pötter R, Lang S, et al. Dose-effect relationship for local control of cervical cancer by magnetic resonance image-guided brachytherapy. Radiother Oncol. 2009b;93(2):311–5.  https://doi.org/10.1016/j.radonc.2009.07.001.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mazeron R, Castelnau-Marchand P, Dumas I, et al. Impact of treatment time and dose escalation on local control in locally advanced cervical cancer treated by chemoradiation and image-guided pulsed-dose rate adaptive brachytherapy. Radiother Oncol. 2015;114(2):257–63.  https://doi.org/10.1016/j.radonc.2014.11.045.CrossRefPubMedGoogle Scholar
  81. 81.
    Tanderup K, Fokdal LU, Sturdza A, et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol. 2016;120(3):441–6.  https://doi.org/10.1016/j.radonc.2016.05.014.CrossRefPubMedGoogle Scholar
  82. 82.
    Mazeron R, Fokdal LU, Kirchheiner K, et al. EMBRACE collaborative group. Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: results from the prospective multicenter EMBRACE study. Radiother Oncol. 2016;120(3):412–9.  https://doi.org/10.1016/j.radonc.2016.06.006.CrossRefPubMedGoogle Scholar
  83. 83.
    Georg P, Lang S, Dimopoulos JC, et al. Dose-volume histogram parameters and late side effects in magnetic resonance image-guided adaptive cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2011;79(2):356–62.  https://doi.org/10.1016/j.ijrobp.2009.11.002.CrossRefPubMedGoogle Scholar
  84. 84.
    Kirisits C, Lang S, Dimopoulos J, et al. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;65(2):624–30.CrossRefPubMedGoogle Scholar
  85. 85.
    Wakatsuki M, Ohno T, Yoshida D, et al. Intracavitary combined with CT-guided interstitial brachytherapy for locally advanced uterine cervical cancer: introduction of the technique and a case presentation. J Radiat Res. 2011;52:54–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Tamaki T, Ohno T, Noda SE, et al. Filling the gap in central shielding: three-dimensional analysis of the EQD2 dose in radiotherapy for cervical cancer with the central shielding technique. J Radiat Res. 2015;56(5):804–10.  https://doi.org/10.1093/jrr/rrv029.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Harkenrider MM, Alite F, Silva SR, et al. Image-based brachytherapy for the treatment of cervical cancer. Int J Radiat Oncol Biol Phys. 2015;92(4):921–34.  https://doi.org/10.1016/j.ijrobp.2015.03.010.CrossRefPubMedGoogle Scholar
  88. 88.
    Mitchell DG, Snyder B, Coakley F, et al. Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol. 2006;24(36):5687–94.CrossRefPubMedGoogle Scholar
  89. 89.
    Viswanathan AN, Dimopoulos J, Kirisits C, et al. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007;68:491–8.  https://doi.org/10.1016/j.ijrobp.2006.12.021.CrossRefPubMedGoogle Scholar
  90. 90.
    Viswanathan AN, Erickson B, Gaffney DK, et al. Comparison and consensus guidelines for delineation of clinical target volume for CT- and MR-based brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2014;90:320–8.  https://doi.org/10.1016/j.ijrobp.2014.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Swanick CW, Castle KO, Vedam S, et al. Comparison of computed tomography- and magnetic resonance imaging-based clinical target volume contours at brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2016;96(4):793–800.  https://doi.org/10.1016/j.ijrobp.2016.07.035.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Ohno T, Wakatsuki M, Toita T, et al. The working group of the gynecological tumor committee of the Japanese Radiation Oncology Study Group (JROSG). Recommendations for high-risk clinical target volume definition with computed tomography for three-dimensional image-guided brachytherapy in cervical cancer patients. J Radiat Res. 2017;58(3):341–50.  https://doi.org/10.1093/irthrw109.CrossRefPubMedGoogle Scholar
  93. 93.
    Nesvacil N, Pötter R, Sturdza A, et al. Adaptive image guided brachytherapy for cervical cancer: a combined MRI-/CT-planning technique with MRI only at first fraction. Radiother Oncol. 2013;107(1):75–81.  https://doi.org/10.1016/j.radonc.2012.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Watanabe M, Iwai Y, Togasaki G, et al. Preliminary results of a new workflow for MRI/CT-based image-guided brachytherapy in cervical carcinoma. Jpn J Radiol. 2017;35(12):760–5.CrossRefGoogle Scholar
  95. 95.
    Tanderup K, Nesvacil N, Potter R, et al. Uncertainties in image guided adaptive cervix cancer brachytherapy: impact on planning and prescription. Radiother Oncol. 2013;107:1–5.  https://doi.org/10.1016/j.radonc.2013.02.014.CrossRefPubMedGoogle Scholar
  96. 96.
    Volumetric dose assessment. Prescribing, recording, and reporting brachytherapy for cancer of the cervix. ICRU Report 89. P123–131, 2016.Google Scholar
  97. 97.
    Viswanathan AN, Moughan J, Small W Jr, et al. The quality of cervical cancer brachytherapy implantation and the impact on local recurrence and disease-free survival in radiation therapy oncology group prospective trials 0116 and 0128. Int J Gynecol Cancer. 2012;22:123–31.  https://doi.org/10.1097/IGC.0b013e31823ae3c9.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Yoshio K, Murakami N, Morota M, et al. Inverse planning for combination of intracavitary and interstitial brachytherapy for locally advanced cervical cancer. J Radiat Res. 2013;54(6):1146–52.  https://doi.org/10.1093/jrr/rrt072.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Takafumi Toita
    • 1
  1. 1.Radiation Therapy CenterOkinawa Chubu HospitalOkinawaJapan

Personalised recommendations