Advertisement

Graphene-Based Nanomaterials and Their Applications in Biosensors

  • Young Jun KimEmail author
  • Bongjin Jeong
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)

Abstract

Recently graphene has been drawing tremendous attention mainly due to its potential contributions to applications in biology, information technology and energy. Among these applications graphene-based biosensors have been particularly progressed caused in part by development of diverse derivatives of graphene such as graphene oxides (GOs) and graphene quantum dots (GQDs). In this chapter preparation and functionalization of the graphene and GOQs are described together with their optoelectronic properties. Recent progresses in graphene and GQD-based biosensors are also highlighted with emphasis on immunoassay which utilizes unique interaction between antigen and antibody, and oligonucleotide assay which utilizes hybridization process. Since electrical and optical features are the most prominent characteristics of graphene-based nanomaterials, biosensor systems will be focused on electrochemical and fluorescence-based detection scheme.

Keywords

Graphene Graphene oxide Graphene quantum dot Biosensor Immunoassay Oligonucleotide 

References

  1. Alwarappan S, Erdem A, Liu C, Li C-Z (2009) Probing the electrochemical properties of graphene Nanosheets for biosensing applications. J Phys Chem C 113(20):8853–8857.  https://doi.org/10.1021/jp9010313 CrossRefGoogle Scholar
  2. Aparna R, Sivakumar N, Balakrishnan A, Nair AS, Nair SV, Subramanian KRV (2013) An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J Renew Sustain Energy 5(3):033123–033123.  https://doi.org/10.1063/1.4809794 CrossRefGoogle Scholar
  3. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907.  https://doi.org/10.1021/nl0731872 CrossRefPubMedGoogle Scholar
  4. Bonanni A, Ambrosi A, Pumera M (2012) On oxygen-containing groups in chemically modified Graphenes. Chem Eur J 18(15):4541–4548.  https://doi.org/10.1002/chem.201104003 CrossRefPubMedGoogle Scholar
  5. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19(15):6050–6055.  https://doi.org/10.1021/la026525h CrossRefGoogle Scholar
  6. Broude NE (2002) Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends Biotechnol 20(6):249–256.  https://doi.org/10.1016/S0167-7799(02)01942-X CrossRefPubMedGoogle Scholar
  7. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018.  https://doi.org/10.1126/science.281.5385.2016 CrossRefPubMedGoogle Scholar
  8. Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4):1146–1152.  https://doi.org/10.1016/j.carbon.2009.11.037 CrossRefGoogle Scholar
  9. Chen S, Liu J-W, Chen M-L, Chen X-W, Wang J-H (2012) Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chem Commun 48(61):7637–7639.  https://doi.org/10.1039/C2CC32984K CrossRefGoogle Scholar
  10. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71.  https://doi.org/10.1080/10408430903505036 CrossRefGoogle Scholar
  11. Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43(1):381–398.  https://doi.org/10.1039/C3CS60217F CrossRefPubMedGoogle Scholar
  12. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240.  https://doi.org/10.1039/B917103G CrossRefPubMedGoogle Scholar
  13. Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y (2010) Sensitive Immunosensor for Cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon Nanospheres. Anal Chem 82(7):2989–2995.  https://doi.org/10.1021/ac100036p CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eda G, Lin Y-Y, Mattevi C, Yamaguchi H, Chen H-A, Chen IS, Chen C-W, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509.  https://doi.org/10.1002/adma.200901996 CrossRefPubMedGoogle Scholar
  15. Fan L, Hu Y, Wang X, Zhang L, Li F, Han D, Li Z, Zhang Q, Wang Z, Niu L (2012) Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101(Suppl C):192–197.  https://doi.org/10.1016/j.talanta.2012.08.048 CrossRefGoogle Scholar
  16. Freeman R, Willner I (2012) Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 41(10):4067–4085.  https://doi.org/10.1039/C2CS15357B CrossRefPubMedGoogle Scholar
  17. Giovanni M, Bonanni A, Pumera M (2012) Detection of DNA hybridization on chemically modified graphene platforms. Analyst 137(3):580–583.  https://doi.org/10.1039/C1AN15910K CrossRefPubMedGoogle Scholar
  18. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568.  https://doi.org/10.1038/nnano.2008.215 CrossRefPubMedGoogle Scholar
  19. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339.  https://doi.org/10.1021/ja01539a017 CrossRefGoogle Scholar
  20. Lai G, Zhang H, Tamanna T, Yu A (2014) Ultrasensitive immunoassay based on electrochemical measurement of enzymatically produced polyaniline. Anal Chem 86(3):1789–1793.  https://doi.org/10.1021/ac4037119 CrossRefPubMedGoogle Scholar
  21. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388.  https://doi.org/10.1126/science.1157996 CrossRefPubMedGoogle Scholar
  22. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105.  https://doi.org/10.1038/nnano.2007.451 CrossRefGoogle Scholar
  23. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314.  https://doi.org/10.1126/science.1171245 CrossRefPubMedGoogle Scholar
  24. Li Y, Hu Y, Zhao Y, Shi G, Deng L, Hou Y, Qu L (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential Electron-acceptors for photovoltaics. Adv Mater 23(6):776–780.  https://doi.org/10.1002/adma.201003819 CrossRefPubMedGoogle Scholar
  25. Li L-L, Ji J, Fei R, Wang C-Z, Lu Q, Zhang J-R, Jiang L-P, Zhu J-J (2012) A facile microwave avenue to Electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22(14):2971–2979.  https://doi.org/10.1002/adfm.201200166 CrossRefGoogle Scholar
  26. Liu F, Ming P, Li J (2007) Ab initio. Phys Rev B 76(6):064120–064120CrossRefGoogle Scholar
  27. Liu R, Wu D, Feng X, Müllen K (2011) Bottom-up fabrication of Photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc 133(39):15221–15223.  https://doi.org/10.1021/ja204953k CrossRefPubMedGoogle Scholar
  28. Lu J, J-x Y, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375.  https://doi.org/10.1021/nn900546b CrossRefPubMedGoogle Scholar
  29. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399.  https://doi.org/10.1021/nl200758b CrossRefPubMedGoogle Scholar
  30. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544.  https://doi.org/10.1126/science.1104274 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Monsur A, Haque J, Park H, Sung D, Jon S, Choi S-Y, Kim K (2012) An electrochemically reduced graphene oxide-based electrochemical Immunosensing platform for ultrasensitive antigen detection. Anal Chem 84:1871−1878.  https://doi.org/10.1021/ac202562v CrossRefGoogle Scholar
  32. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308.  https://doi.org/10.1126/science.1156965 CrossRefPubMedGoogle Scholar
  33. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128(24):7720–7721.  https://doi.org/10.1021/ja060680r CrossRefPubMedGoogle Scholar
  34. Niyogi S, Bekyarova E, Itkis ME, Zhang H, Shepperd K, Hicks J, Sprinkle M, Berger C, Lau CN, deHeer WA, Conrad EH, Haddon RC (2010) Spectroscopy of covalently functionalized graphene. Nano Lett 10(10):4061–4066.  https://doi.org/10.1021/nl1021128 CrossRefPubMedGoogle Scholar
  35. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669.  https://doi.org/10.1126/science.1102896 CrossRefPubMedGoogle Scholar
  36. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738.  https://doi.org/10.1002/adma.200902825 CrossRefPubMedGoogle Scholar
  37. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564.  https://doi.org/10.1021/la801744a CrossRefPubMedGoogle Scholar
  38. Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H (2014) A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA. Nanoscale 6(11):5671–5674.  https://doi.org/10.1039/C3NR06583A CrossRefPubMedGoogle Scholar
  39. Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) Kinetics of Diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4(4):1949–1954.  https://doi.org/10.1021/nn901899j CrossRefPubMedGoogle Scholar
  40. Skaltsas T, Ke X, Bittencourt C, Tagmatarchis N (2013) Ultrasonication induces oxygenated species and defects onto exfoliated graphene. J Phys Chem C 117(44):23272–23278.  https://doi.org/10.1021/jp4057048 CrossRefGoogle Scholar
  41. Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43(2):190–200.  https://doi.org/10.1021/ar9001069 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286.  https://doi.org/10.1038/nature04969 CrossRefPubMedGoogle Scholar
  43. Stobiecka M, Chałupa A (2015) Biosensors based on molecular beacons. Chem Pap 69(1):62–76.  https://doi.org/10.1515/chempap-2015-0026 CrossRefGoogle Scholar
  44. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19(17):2782–2789.  https://doi.org/10.1002/adfm.200900377 CrossRefGoogle Scholar
  45. Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, Frazier ML, Killary AM, Sen S (2009a) MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res 2(9):807–813.  https://doi.org/10.1158/1940-6207.capr-09-0094 CrossRefGoogle Scholar
  46. Wang H, Robinson JT, Li X, Dai H (2009b) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131(29):9910–9911.  https://doi.org/10.1021/ja904251p CrossRefPubMedGoogle Scholar
  47. Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W (2009c) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 48(5):856–870.  https://doi.org/10.1002/anie.200800370 CrossRefGoogle Scholar
  48. Wang Z, Zhang J, Chen P, Zhou X, Yang Y, Wu S, Niu L, Han Y, Wang L, Chen P, Boey F, Zhang Q, Liedberg B, Zhang H (2011) Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes. Biosens Bioelectron 26(9):3881–3886.  https://doi.org/10.1016/j.bios.2011.03.002 CrossRefPubMedGoogle Scholar
  49. Yan X, Cui X, Li L-s (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132(17):5944–5945.  https://doi.org/10.1021/ja1009376 CrossRefPubMedGoogle Scholar
  50. Yang T, Li Q, Li X, Wang X, Du M, Jiao K (2013) Freely switchable impedimetric detection of target gene sequence based on synergistic effect of ERGNO/PANInanocomposites. Biosens Bioelectron 42(Suppl C):415–418.  https://doi.org/10.1016/j.bios.2012.11.007 CrossRefPubMedGoogle Scholar
  51. Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C, Yang S (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22(15):7461–7467.  https://doi.org/10.1039/C2JM16835A CrossRefGoogle Scholar
  52. Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A, Wang C, San L, Fan C, Zuo X, Mi X (2015) Universal fluorescence biosensor platform based on graphene quantum dots and pyrene-functionalized molecular beacons for detection of MicroRNAs. ACS Appl Mater Interfaces 7(30):16152–16156.  https://doi.org/10.1021/acsami.5b04773 CrossRefPubMedGoogle Scholar
  53. Zhao H, Chang Y, Liu M, Gao S, Yu H, Quan X (2013) A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem Commun 49(3):234–236.  https://doi.org/10.1039/C2CC35503E CrossRefGoogle Scholar
  54. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613.  https://doi.org/10.1021/ac900136z CrossRefGoogle Scholar
  55. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48(7):2118–2122.  https://doi.org/10.1016/j.carbon.2010.02.001 CrossRefGoogle Scholar
  56. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei H, Zhang H, Sun H, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47(24):6858–6860.  https://doi.org/10.1039/C1CC11122A CrossRefGoogle Scholar
  57. Zhu S, Zhang J, Liu X, Li B, Wang X, Tang S, Meng Q, Li Y, Shi C, Hu R, Yang B (2012) Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Adv 2(7):2717–2720.  https://doi.org/10.1039/C2RA20182H CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.BioMedicalIT DepartmentElectronics and Telecommunications Research Institute (ETRI)DaejeonSouth Korea

Personalised recommendations