Advertisement

3D Bioprinting for Artificial Pancreas Organ

  • Seon Jae Lee
  • Jae Bin Lee
  • Young-Woo Park
  • Dong Yun LeeEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)

Abstract

Type 1 diabetes mellitus (T1DM) results from an autoimmune destruction of insulin-producing beta cells in the islet of the endocrine pancreas. Although islet transplantation has been regarded as an ideal strategy for T1D, transplanted islets are rejected from host immune system. To immunologically protect them, islet encapsulation technology with biocompatible materials is emerged as an immuno-barrier. However, this technology has been limited for clinical trial such as hypoxia in the central core of islet bead, impurity of islet bead and retrievability from the body. Recently, 3D bioprinting has been emerged as an alternative approach to make the artificial pancreas. It can be used to position live cells in a desired location with real scale of human organ. Furthermore, constructing a vascularization of the artificial pancreas is actualized with 3D bioprinting. Therefore, it is possible to create real pancreas-mimic artificial organ for clinical application. In conclusion, 3D bioprinting can become a new leader in the development of the artificial pancreas to overcome the existed islet.

Keywords

Type 1 diabetes Islet transplantation Artificial pancreas 3D bioprinting Scale up Hypoxia 

Notes

Acknowledgements

This study was supported by Basic Science Research Program (NRF-2015R1A2A1A05001832) and partially by the Bio & Medical Technology Development Program (NRF-2015M3A9E2030125) through the National Research Foundation (NRF) funded by the Korean Government (MSIP & MOHW). Also, this study was partially supported by a grant of the Korea Health Technology R&D project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI14C2099).

Reference

  1. Algire GH, Legallais FY (1949) Recent developments in the transparent-chamber technique as adapted to the mouse. J Natl Cancer Inst 10(2):225–253PubMedGoogle Scholar
  2. Algire GH, Weaver JM, Prehn RT (1954) Growth of cells in vivo in diffusion chambers. I. Survival of homografts in immunized mice. J Natl Cancer Inst 15(3):493–507PubMedGoogle Scholar
  3. Bak D (2003) Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Autom 23(4):340–345.  https://doi.org/10.1108/01445150310501190 CrossRefGoogle Scholar
  4. Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, Qi M, Kinzer KP, Oberholzer J, Calafiore R (2011) Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34(11):2406–2409.  https://doi.org/10.2337/dc11-0731 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041.  https://doi.org/10.1016/j.biomaterials.2012.04.050 CrossRefPubMedGoogle Scholar
  6. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P (2014) The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35(1):49–62.  https://doi.org/10.1016/j.biomaterials.2013.09.078 CrossRefPubMedGoogle Scholar
  7. Borg DJ, Bonifacio E (2011) The use of biomaterials in islet transplantation. Curr Diab Rep 11(5):434–444.  https://doi.org/10.1007/s11892-011-0210-2 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Borselli C, Ungaro F, Oliviero O, d’Angelo I, Quaglia F, La Rotonda MI, Netti PA (2010) Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres. J Biomed Mater Res A 92a(1):94–102.  https://doi.org/10.1002/jbm.a.32332 CrossRefGoogle Scholar
  9. Brauker JH, Carrbrendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC (1995) Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res 29(12):1517–1524.  https://doi.org/10.1002/jbm.820291208 CrossRefPubMedGoogle Scholar
  10. Brauker J, Martinson LA, Young SK, Johnson RC (1996) Local inflammatory response around diffusion chambers containing xenografts – nonspecific destruction of tissues and decreased local vascularization. Transplantation 61(12):1671–1677.  https://doi.org/10.1097/00007890-199606270-00002 CrossRefPubMedGoogle Scholar
  11. Buder B, Alexander M, Krishnan R, Chapman DW, Lakey JR (2013) Encapsulated islet transplantation: strategies and clinical trials. Immune Netw 13(6):235–239.  https://doi.org/10.4110/in.2013.13.6.235 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Calafiore R, Basta G, Luca G, Lemmi A, Montanucci MP, Calabrese G, Racanicchi L, Mancuso F, Brunetti P (2006) Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 29(1):137–138CrossRefGoogle Scholar
  13. Chang TM (1964) Semipermeable Microcapsules. Science 146(3643):524–525CrossRefGoogle Scholar
  14. Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3(1):e1451.  https://doi.org/10.1371/journal.pone.0001451 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 10(20):3016–3020CrossRefGoogle Scholar
  16. Chen XF, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CCW, George SC (2009) Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Pt A 15(6):1363–1371.  https://doi.org/10.1089/ten.tea.2008.0314 CrossRefGoogle Scholar
  17. Chick WL, Like AA, Lauris V (1975) Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. Science 187(4179):847–849CrossRefGoogle Scholar
  18. Chick WL, Perna JJ, Lauris V, Low D, Galletti PM, Panol G, Whittemore AD, Like AA, Colton CK, Lysaght MJ (1977) Artificial pancreas using living Beta cells – effects on glucose homeostasis in diabetic rats. Science 197(4305):780–782.  https://doi.org/10.1126/science.407649 CrossRefPubMedGoogle Scholar
  19. Clark H, Barbari TA, Stump K, Rao G (2000) Histologic evaluation of the inflammatory response around implanted hollow fiber membranes. J Biomed Mater Res 52(1):183–192CrossRefGoogle Scholar
  20. Cornolti R, Figliuzzi M, Remuzzi A (2009) Effect of micro- and macroencapsulation on oxygen consumption by pancreatic islets. Cell Transplant 18(2):195–201CrossRefGoogle Scholar
  21. Daoud JT, Petropavlovskaia MS, Patapas JM, Degrandpre CE, Diraddo RW, Rosenberg L, Tabrizian M (2011) Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 32(6):1536–1542.  https://doi.org/10.1016/j.biomaterials.2010.10.036 CrossRefPubMedGoogle Scholar
  22. de Vos P, Spasojevic M, Faas MM (2010) Treatment of diabetes with encapsulated islets. Adv Exp Med Biol 670:38–53CrossRefGoogle Scholar
  23. Demirdogen B, Elcin AE, Elcin YM (2010) Neovascularization by bFGF releasing hyaluronic acid-gelatin microspheres: in vitro and in vivo studies. Growth Factors 28(6):426–436.  https://doi.org/10.3109/08977194.2010.508456 CrossRefPubMedGoogle Scholar
  24. Desai T, Shea LD (2017) Advances in islet encapsulation technologies. Nat Rev Drug Discov 16(5):338–350.  https://doi.org/10.1038/nrd.2016.232 CrossRefPubMedGoogle Scholar
  25. Desai TA, West T, Cohen M, Boiarski T, Rampersaud A (2004) Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 56(11):1661–1673.  https://doi.org/10.1016/j.addr.2003.11.006 CrossRefPubMedGoogle Scholar
  26. Domingos M, Intranuovo F, Gloria A, Gristina R, Ambrosio L, Bartolo PJ, Favia P (2013) Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomater 9(4):5997–6005.  https://doi.org/10.1016/j.actbio.2012.12.031 CrossRefPubMedGoogle Scholar
  27. Dufrane D, Goebbels RM, Saliez A, Guiot Y, Gianello P (2006) Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 81(9):1345–1353.  https://doi.org/10.1097/01.tp.0000208610.75997.20 CrossRefPubMedGoogle Scholar
  28. Ekser B, Bottino R, Cooper DKC (2016) Clinical islet xenotransplantation: a step forward. EBioMedicine 12:22–23.  https://doi.org/10.1016/j.ebiom.2016.09.023 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14(2):157–161.  https://doi.org/10.1111/j.1399-3089.2007.00384.x CrossRefPubMedGoogle Scholar
  30. Figliuzzi M, Cornolti R, Perico N, Rota C, Morigi M, Remuzzi G, Remuzzi A, Benigni A (2009) Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats. Transplant Proc 41(5):1797–1800.  https://doi.org/10.1016/j.transproceed.2008.11.015 CrossRefPubMedGoogle Scholar
  31. Fortunato TM, Beltrami C, Emanueli C, De Bank PA, Pula G (2016) Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications. Sci Rep 6:25326.  https://doi.org/10.1038/srep25326 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Foty R (2011) A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 51.  https://doi.org/10.3791/2720
  33. Fumimoto Y, Matsuyama A, Komoda H, Okura H, Lee CM, Nagao A, Nishida T, Ito T, Sawa Y (2009) Creation of a rich subcutaneous vascular network with implanted adipose tissue-derived stromal cells and adipose tissue enhances subcutaneous grafting of islets in diabetic mice. Tissue Eng Part C Methods 15(3):437–444.  https://doi.org/10.1089/ten.tec.2008.0555 CrossRefPubMedGoogle Scholar
  34. Gates RJ, Smith R, Lazarus NR, Hunt MI (1972) Return to normal of blood-glucose, plasma-insulin, and weight-gain in New Zealand obese mice after implantation of islets of langerhans. Lancet 2(7777):567–570CrossRefGoogle Scholar
  35. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16 discussion 16CrossRefGoogle Scholar
  36. Hamamoto Y, Fujimoto S, Inada A, Takehiro M, Nabe K, Shimono D, Kajikawa M, Fujita J, Yamada Y, Seino Y (2003) Beneficial effect of pretreatment of islets with fibronectin on glucose tolerance after islet transplantation. Horm Metab Res 35(8):460–465.  https://doi.org/10.1055/s-2003-41802 CrossRefPubMedGoogle Scholar
  37. Handschel JG, Depprich RA, Kubler NR, Wiesmann HP, Ommerborn M, Meyer U (2007) Prospects of micromass culture technology in tissue engineering. Head Face Med 3:4.  https://doi.org/10.1186/1746-160X-3-4 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Huang GS, Dai LG, Yen BL, Hsu SH (2011) Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 32(29):6929–6945.  https://doi.org/10.1016/j.biomaterials.2011.05.092 CrossRefPubMedGoogle Scholar
  39. Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, Nair I, Ferreri K, Kandeel F, Mullen Y (2010) Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89(12):1438–1445CrossRefGoogle Scholar
  40. Jacobs-Tulleneers-Thevissen D, Chintinne M, Ling Z, Gillard P, Schoonjans L, Delvaux G, Strand BL, Gorus F, Keymeulen B, Pipeleers D, Beta Cell Therapy Consortium E-F (2013) Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia 56(7):1605–1614.  https://doi.org/10.1007/s00125-013-2906-0 CrossRefPubMedGoogle Scholar
  41. Jiang FX, Naselli G, Harrison LC (2002) Distinct distribution of laminin and its integrin receptors in the pancreas. J Histochem Cytochem 50(12):1625–1632.  https://doi.org/10.1177/002215540205001206 CrossRefPubMedGoogle Scholar
  42. Kaido T, Yebra M, Cirulli V, Montgomery AM (2004) Regulation of human beta-cell adhesion, motility, and insulin secretion by collagen IV and its receptor alpha1beta1. J Biol Chem 279(51):53762–53769.  https://doi.org/10.1074/jbc.M411202200 CrossRefPubMedGoogle Scholar
  43. Kaigler D, Silva EA, Mooney DJ (2013) Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol 84(2):230–238.  https://doi.org/10.1902/jop.2012.110684 CrossRefPubMedGoogle Scholar
  44. Keskar V, Gandhi M, Gemeinhart EJ, Gemeinhart RA (2009) Initial evaluation of vascular ingrowth into superporous hydrogels. J Tissue Eng Regen M 3(6):486–490.  https://doi.org/10.1002/term.183 CrossRefGoogle Scholar
  45. King D, Tansey T (2003) Rapid tooling: selective laser sintering injection tooling. J Mater Process Tech 132(1–3):42–48. Pii S0924-0136(02)00257-1. doi:  https://doi.org/10.1016/S0924-0136(02)00257-1 CrossRefGoogle Scholar
  46. Klock G, Frank H, Houben R, Zekorn T, Horcher A, Siebers U, Wohrle M, Federlin K, Zimmermann U (1994) Production of purified alginates suitable for use in immunoisolated transplantation. Appl Microbiol Biotechnol 40(5):638–643CrossRefGoogle Scholar
  47. Ko C, Dixit V, Shaw W, Gitnick G (1995) In-vitro slow-release profile of endothelial-cell growth-factor immobilized within calcium alginate microbeads. Artif Cell Blood Sub 23(2):143–151.  https://doi.org/10.3109/10731199509117934 CrossRefGoogle Scholar
  48. Laschke MW, Rucker M, Jensen G, Carvalho C, Mulhaupt R, Gellrich NC, Menger MD (2008) Improvement of vascularization of PLGA scaffolds by inosculation of in situ-preformed functional blood vessels with the host microvasculature. Ann Surg 248(6):939–948.  https://doi.org/10.1097/SLA.0b013e31818fa52f CrossRefPubMedGoogle Scholar
  49. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW (2014a) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103.  https://doi.org/10.1088/1758-5082/6/2/024103 CrossRefPubMedGoogle Scholar
  50. Lee VK, Lanzi AM, Ngo H, Yoo SS, Vincent PA, Dai GH (2014b) Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 7(3):460–472.  https://doi.org/10.1007/s12195-014-0340-0 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lembert N, Wesche J, Petersen P, Doser M, Zschocke P, Becker HD, Ammon HP (2005) Encapsulation of islets in rough surface, hydroxymethylated polysulfone capillaries stimulates VEGF release and promotes vascularization after transplantation. Cell Transplant 14(2–3):97–108CrossRefGoogle Scholar
  52. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910CrossRefGoogle Scholar
  53. Liu WF, Chen CS (2005) Engineering biomaterials to control cell function. Mater Today 8(12):28–35.  https://doi.org/10.1016/S1369-7021(05)71222-0 CrossRefGoogle Scholar
  54. Liu J, Zheng HY, Poh PSP, Machens HG, Schilling AF (2015) Hydrogels for engineering of Perfusable vascular networks. Int J Mol Sci 16(7):15997–16016CrossRefGoogle Scholar
  55. MacGregor RR, Williams SJ, Tong PY, Kover K, Moore WV, Stehno-Bittel L (2005) Small rat islets are superior to large islets in in vitro function and in transplantation outcomes. Am J Physiol Endocrinol Metab 290(5):771–779CrossRefGoogle Scholar
  56. Marchioli G, van Gurp L, van Krieken PP, Stamatialis D, Engelse M, van Blitterswijk CA, Karperien MBJ, de Koning E, Alblas J, Moroni L, van Apeldoorn AA (2015) Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication 7(2):025009CrossRefGoogle Scholar
  57. Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204CrossRefGoogle Scholar
  58. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104.  https://doi.org/10.1016/j.progpolymsci.2011.11.007 CrossRefGoogle Scholar
  59. Menard M, Dusseault J, Langlois G, Baille WE, Tam SK, Yahia L, Zhu XX, Halle JP (2010) Role of protein contaminants in the immunogenicity of alginates. J Biomed Mater Res B Appl Biomater 93(2):333–340.  https://doi.org/10.1002/jbm.b.31570 CrossRefPubMedGoogle Scholar
  60. Monaco AP, Maki T, Ozato H, Carretta M, Sullivan SJ, Borland KM, Mahoney MD, Chick WL, Muller TE, Wolfrum J et al (1991) Transplantation of islet allografts and xenografts in totally pancreatectomized diabetic dogs using the hybrid artificial pancreas. Ann Surg 214(3):339–360 discussion 361–332CrossRefGoogle Scholar
  61. Mrksich M (2000) A surface chemistry approach to studying cell adhesion. Chem Soc Rev 29(4):267–273.  https://doi.org/10.1039/a705397e CrossRefGoogle Scholar
  62. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785.  https://doi.org/10.1038/nbt.2958 CrossRefPubMedGoogle Scholar
  63. Nakakita N, Sezaki K, Yamazaki Y, Uchinuma E (1999) Augmentation rhinoplasty using an L-shaped auricular cartilage framework combined with dermal fat graft for cleft lip nose. Aesthet Plast Surg 23(2):107–112.  https://doi.org/10.1007/s002669900251 CrossRefGoogle Scholar
  64. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544.  https://doi.org/10.1016/j.biomaterials.2010.03.064 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Nomi M, Miyake H, Sugita Y, Fujisawa M, Soker S (2006) Role of growth factors and endothelial cells in therapeutic angiogenesis and tissue engineering. Curr Stem Cell Res Ther 1(3):333–343CrossRefGoogle Scholar
  66. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917CrossRefGoogle Scholar
  67. Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliver Rev 63(4–5):300–311.  https://doi.org/10.1016/j.addr.2011.03.004 CrossRefGoogle Scholar
  68. O’Shea GM, Goosen MF, Sun AM (1984) Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. Biochim Biophys Acta 804(1):133–136CrossRefGoogle Scholar
  69. O’Sullivan ES, Johnson AS, Omer A, Hollister-Lock J, Bonner-Weir S, Colton CK, Weir GC (2010) Rat islet cell aggregates are superior to islets for transplantation in microcapsules. Diabetologia 53(5):937–945.  https://doi.org/10.1007/s00125-009-1653-8 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Orsetti A, Guy C, Zouari N, Deffay R (1978) Implantation of a bio-artificial insulin distributor in dog, using islets of Langerhans from different animal species. Cr Soc Biol 172(1):144–150Google Scholar
  71. Otterlei M, Ostgaard K, Skjak-Braek G, Smidsrod O, Soon-Shiong P, Espevik T (1991) Induction of cytokine production from human monocytes stimulated with alginate. J Immunother 10(4):286–291CrossRefGoogle Scholar
  72. Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33(7):395–400.  https://doi.org/10.1016/j.tibtech.2015.04.005 CrossRefPubMedGoogle Scholar
  73. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699.  https://doi.org/10.1109/TBME.2013.2243912 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Pati F, Gantelius J, Svahn HA (2016) 3D bioprinting of tissue/organ models. Angew Chem Int Ed Engl 55(15):4650–4665.  https://doi.org/10.1002/anie.201505062 CrossRefPubMedGoogle Scholar
  75. Pedraza E, Coronel MM, Fraker CA, Ricordi C, Stabler CL (2012) Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. P Natl Acad Sci USA 109(11):4245–4250CrossRefGoogle Scholar
  76. Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, van Weeren PR, Dhert WJA, Hennink WE, Vermonden T (2011) Hyaluronic acid and dextran-based semi-IPN hydrogels as. Biomater Bioprinting Biomacromolecules 12(5):1831–1838.  https://doi.org/10.1021/bm200178w CrossRefGoogle Scholar
  77. Prehn RT, Weaver JM, Algire GH (1954) The diffusion-chamber technique applied to a study of the nature of homograft resistance. J Natl Cancer Inst 15(3):509–517PubMedGoogle Scholar
  78. Qi M (2014) Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus. Adv Med 2014:429710.  https://doi.org/10.1155/2014/429710 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ramachandran K, Huang H-H, Stehno-Bittel L (2015) A simple method to replace islet equivalents for volume quantification of human islets. Cell Transplant 24:1183–1194CrossRefGoogle Scholar
  80. Rivron NC, Liu J, Rouwkema J, de Boer J, van Blitterswijk CA (2008) Engineering vascularised tissues in vitro. Eur Cells Mater 15:27–40CrossRefGoogle Scholar
  81. Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441.  https://doi.org/10.1016/j.tibtech.2008.04.009 CrossRefPubMedGoogle Scholar
  82. Ryan EA, Lakey JR, Rajotte RV, Korbutt GS, Kin T, Imes S, Rabinovitch A, Elliott JF, Bigam D, Kneteman NM, Warnock GL, Larsen I, Shapiro AM (2001) Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 50(4):710–719CrossRefGoogle Scholar
  83. Sabek OM, Farina M, Fraga DW, Afshar S, Ballerini A, Filgueira CS, Thekkedath UR, Grattoni A and Gaber AO (2016) Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment. J Tissue Eng 7 2041731416638198.  https://doi.org/10.1177/2041731416638198 CrossRefGoogle Scholar
  84. Sakata N, Sumi S, Yoshimatsu G, Goto M, Egawa S, Unno M (2012) Encapsulated islets transplantation: past, present and future. World J Gastrointest Pathophysiol 3(1):19–26.  https://doi.org/10.4291/wjgp.v3.i1.19 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10(1):12–27.  https://doi.org/10.1002/mabi.200900107 CrossRefPubMedGoogle Scholar
  86. Sato Y, Endo H, Okuyama H, Takeda T, Iwahashi H, Imagawa A, Yamagata K, Shimomura I, Inoue M (2011) Cellular hypoxia of pancreatic beta-cells due to high levels of oxygen consumption for insulin secretion in vitro. J Biol Chem 286(14).  https://doi.org/10.1074/jbc.M110.194738 CrossRefGoogle Scholar
  87. Sawhney AS, Pathak CP, Hubbell JA (1993) Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate-poly(l-lysine) microcapsules for enhanced biocompatibility. Biomaterials 14(13):1008–1016CrossRefGoogle Scholar
  88. Scharp DW, Marchetti P (2014) Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliver Rev 67–68:35–73.  https://doi.org/10.1016/j.addr.2013.07.018 CrossRefGoogle Scholar
  89. Schweicher J, Nyitray C, Desai TA (2014) Membranes to achieve immunoprotection of transplanted islets. Front Biosci (Landmark Ed) 19:49–76CrossRefGoogle Scholar
  90. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238.  https://doi.org/10.1056/NEJM200007273430401 CrossRefPubMedGoogle Scholar
  91. Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, Cagliero E, Alejandro R, Ryan EA, DiMercurio B, Morel P, Polonsky KS, Reems JA, Bretzel RG, Bertuzzi F, Froud T, Kandaswamy R, Sutherland DE, Eisenbarth G, Segal M, Preiksaitis J, Korbutt GS, Barton FB, Viviano L, Seyfert-Margolis V, Bluestone J, Lakey JR (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355(13):1318–1330.  https://doi.org/10.1056/NEJMoa061267 CrossRefGoogle Scholar
  92. Shim JH, Kim JY, Park M, Park J, Cho DW (2011) Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3(3):034102.  https://doi.org/10.1088/1758-5082/3/3/034102 CrossRefPubMedGoogle Scholar
  93. Shim JH, Lee JS, Kim JY, Cho DW (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014.  https://doi.org/10.1088/0960-1317/22/8/085014 CrossRefGoogle Scholar
  94. Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M et al (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343(8903):950–951CrossRefGoogle Scholar
  95. Souza YE, Chaib E, Lacerda PG, Crescenzi A, Bernal-Filho A, D’Albuquerque LA (2011) Islet transplantation in rodents. Do encapsulated islets really work? Arq Gastroenterol 48(2):146–152CrossRefGoogle Scholar
  96. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138.  https://doi.org/10.1126/science.1106587 CrossRefGoogle Scholar
  97. Storrs R, Dorian R, King SR, Lakey J, Rilo H (2001) Preclinical development of the islet sheet. Ann N Y Acad Sci 944:252–266CrossRefGoogle Scholar
  98. Strautz RL (1970) Studies of hereditary-obese mice (Obob) after implantation of pancreatic islets in Millipore filter capsules. Diabetologia 6(3):306–312.  https://doi.org/10.1007/Bf01212243 CrossRefPubMedGoogle Scholar
  99. Sun AM, Parisius W, Healy GM, Vacek I, Macmorine HG (1977) Use, in diabetic rats and monkeys, of artificial capillary units containing cultured islets of Langerhans (artificial endocrine pancreas). Diabetes 26(12):1136–1139.  https://doi.org/10.2337/diabetes.26.12.1136 CrossRefPubMedGoogle Scholar
  100. Sun A, Parisius W, Macmorine H, Sefton M, Stone R (1980) An artificial endocrine pancreas containing cultured islets of Langerhans. Artif Organs 4(4):275–278CrossRefGoogle Scholar
  101. Sutherland RM, Carlsson J, Durand R (1981) Spheroids in cancer research. Cancer Res 41:2980–2984Google Scholar
  102. Suzuki K, Bonner-Weir S, Trivedi N, Yoon KH, Hollister-Lock J, Colton CK, Weir GC (1998) Function and survival of macroencapsulated syngeneic islets transplanted into streptozocin-diabetic mice. Transplantation 66(1):21–28.  https://doi.org/10.1097/00007890-199807150-00004 CrossRefPubMedGoogle Scholar
  103. Tabriz AG, Hermida MA, Leslie NR, Shu WM (2015) Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 7(4)CrossRefGoogle Scholar
  104. Tarantal AF, Lee CC, Itkin-Ansari P (2009) Real-time bioluminescence imaging of macroencapsulated fibroblasts reveals allograft protection in rhesus monkeys (Macaca mulatta). Transplantation 88(1):38–41.  https://doi.org/10.1097/TP.0b013e3181a9ee6c CrossRefPubMedPubMedCentralGoogle Scholar
  105. Thomas FT, Contreras JL, Bilbao G, Ricordi C, Curiel D, Thomas JM (1999) Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation. Surgery 126(2):299–304CrossRefGoogle Scholar
  106. Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA (2005) Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010.  https://doi.org/10.1111/j.1600-6143.2005.00790.x CrossRefPubMedGoogle Scholar
  107. Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, Philips R (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32(10):1887–1889.  https://doi.org/10.2337/dc09-0744 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Tze WJ, Wong FC, Chen LM, Oyoung S (1976) Implantable artificial endocrine pancreas unit used to restore Normoglycaemia in diabetic rat. Nature 264(5585):466–467.  https://doi.org/10.1038/264466a0 CrossRefPubMedGoogle Scholar
  109. Tze WJ, Tai J, Wong FC, Davis HR (1980) Studies with implantable artificial capillary units containing rat islets on diabetic dogs. Diabetologia 19(6):541–545CrossRefGoogle Scholar
  110. Valdes-Gonzalez RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez AJ, Davila-Perez R, Elliott RB, Teran L, White DJ (2005) Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol 153(3):419–427.  https://doi.org/10.1530/eje.1.01982 CrossRefPubMedGoogle Scholar
  111. Valdes-Gonzalez R, Rodriguez-Ventura AL, White DJ, Bracho-Blanchet E, Castillo A, Ramirez-Gonzalez B, Lopez-Santos MG, Leon-Mancilla BH, Dorantes LM (2010) Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin Exp Immunol 162(3):537–542.  https://doi.org/10.1111/j.1365-2249.2010.04273.x CrossRefPubMedPubMedCentralGoogle Scholar
  112. Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, Li J, Langan E, Wyckoff J, Loo WS, Jhunjhunwala S, Chiu A, Siebert S, Tang K, Hollister-Lock J, Aresta-Dasilva S, Bochenek M, Mendoza-Elias J, Wang Y, Qi M, Lavin DM, Chen M, Dholakia N, Thakrar R, Lacik I, Weir GC, Oberholzer J, Greiner DL, Langer R, Anderson DG (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651.  https://doi.org/10.1038/nmat4290 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wang T, Lacik I, Brissova M, Anilkumar AV, Prokop A, Hunkeler D, Green R, Shahrokhi K, Powers AC (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol 15(4):358–362.  https://doi.org/10.1038/nbt0497-358 CrossRefPubMedGoogle Scholar
  114. Wang XH, Yan YN, Pan YQ, Xiong Z, Liu HX, Cheng B, Liu F, Lin F, Wu RD, Zhang RJ, Lu QP (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12(1):83–90.  https://doi.org/10.1089/ten.2006.12.83 CrossRefPubMedGoogle Scholar
  115. Wust S, Muller R, Hofmann S (2011) Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater 2(3):119–154.  https://doi.org/10.3390/jfb2030119 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Wust S, Godla ME, Muller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10(2):630–640.  https://doi.org/10.1016/j.actbio.2013.10.016 CrossRefPubMedGoogle Scholar
  117. Yan YN, Wang XH, Xiong Z, Liu HX, Liu F, Lin F, Wu RD, Zhang RJ, Lu QP (2005) Direct construction of a three-dimensional structure with cells and hydrogel. J Bioact Compat Pol 20(3):259–269.  https://doi.org/10.1177/0883911505053658 CrossRefGoogle Scholar
  118. Yeo M, Lee JS, Chun W, Kim GH (2016) An innovative collagen-based cell-printing method for obtaining human adipose stem cell-laden structures consisting of Core sheath structures for tissue engineering. Biomacromolecules 17(4):1365–1375.  https://doi.org/10.1021/acs.biomac.5b01764 CrossRefPubMedGoogle Scholar
  119. Zadpoor AA, Malda J (2017) Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng 45(1):1–11.  https://doi.org/10.1007/s10439-016-1719-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Seon Jae Lee
    • 1
  • Jae Bin Lee
    • 1
  • Young-Woo Park
    • 1
  • Dong Yun Lee
    • 1
    • 2
    Email author
  1. 1.Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research TeamHanyang UniversitySeoulSouth Korea
  2. 2.Institute of Nano Science & Technology (INST)Hanyang UniversitySeoulSouth Korea

Personalised recommendations