Advertisement

Bioartificial Esophagus: Where Are We Now?

  • Eun-Jae ChungEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)

Abstract

The current treatments for esophageal diseases, such as carcinomas, trauma or congenital malformations, require surgical intervention and esophageal reconstruction using redundant parts of the gastrointestinal tract. However, the use of gastrointestinal segments can cause various surgical morbidities and mortality because additional abdominal surgery may be required at the expense of other anatomic structures. Therefore, tissue engineering using various biomaterial or cell sources has emerged as an alternative strategy of biomimicking the native esophageal tissue that could be implanted as an artificial graft. Although tissue engineering techniques have promise as an effective regenerative strategy, no functional solution currently exists for esophageal reconstruction. Here, we present a review of the progress made in the field of regenerative medicine for esophageal reconstruction from bench to bedside.

Keywords

Esophagus Tissue engineering Scaffold Decellularized extracellular matrix Synthetic polymer Epithelial cell Smooth muscle cell 

Notes

Acknowledgments

This research was supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI16C0362).

References

  1. Adolphe C, Wainwright B (2005) Pathways to improving skin regeneration. Expert Rev Mol Med 7(20):1–14.  https://doi.org/10.1017/S1462399405009890 CrossRefPubMedGoogle Scholar
  2. Aikawa M, Miyazawa M, Okamoto K, Okada K, Akimoto N, Sato H, Koyama I, Yamaguchi S, Ikada Y (2013) A bioabsorbable polymer patch for the treatment of esophageal defect in a porcine model. J Gastroenterol 48(7):822–829.  https://doi.org/10.1007/s00535-012-0716-7 CrossRefPubMedGoogle Scholar
  3. Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A (2000) Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 35(7):1097–1103.  https://doi.org/10.1053/jpsu.2000.7834 CrossRefPubMedGoogle Scholar
  4. Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, Thapa A, Gilbert TW, Nieponice A (2005) Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 128(1):87–97.  https://doi.org/10.1016/j.jss.2005.03.002 CrossRefPubMedGoogle Scholar
  5. Badylak SF, Hoppo T, Nieponice A, Gilbert TW, Davison JM, Jobe BA (2011) Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A 17(11–12):1643–1650.  https://doi.org/10.1089/ten.TEA.2010.0739 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beckstead BL, Pan S, Bhrany AD, Bratt-Leal AM, Ratner BD, Giachelli CM (2005) Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials 26(31):6217–6228.  https://doi.org/10.1016/j.biomaterials.2005.04.010 CrossRefPubMedGoogle Scholar
  7. Chian KS, Leong MF, Kono K (2015) Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet Oncol 16(2):e84–e92.  https://doi.org/10.1016/S1470-2045(14)70410-3 CrossRefPubMedGoogle Scholar
  8. Chung EJ, Ju HW, Park HJ, Park CH (2015) Three-layered scaffolds for artificial esophagus using poly(ɛ-caprolactone) nanofibers and silk fibroin: an experimental study in a rat model. J Biomed Mater Res A 103(6):2057–2065.  https://doi.org/10.1002/jbm.a.35347 CrossRefPubMedGoogle Scholar
  9. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289CrossRefGoogle Scholar
  10. Diemer P, Markoew S, Le DQ, Qvist N (2015) Poly-ε-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus. Dis Esophagus 28(3):240–245.  https://doi.org/10.1111/dote.12172 CrossRefPubMedGoogle Scholar
  11. Farrell TM, Archer SB, Metreveli RE, Smith CD, Hunter JG (2001) Resection and advancement of esophageal mucosa. A potential therapy for Barrett’s esophagus. Surg Endosc 15(9):937–941.  https://doi.org/10.1007/s004640080057 CrossRefPubMedGoogle Scholar
  12. Grikscheit T, Ochoa ER, Srinivasan A, Gaissert H, Vacanti JP (2003) Tissue-engineered esophagus: experimental substitution by onlay patch or interposition. J Thorac Cardiovasc Surg 126(2):537–544CrossRefGoogle Scholar
  13. Hayashi K, Ando N, Ozawa S, Kitagawa Y, Miki H, Sato M, Kitajima M (2004) A neo-esophagus reconstructed by cultured human esophageal epithelial cells, smooth muscle cells, fibroblasts, and collagen. ASAIO J 50(3):261–266CrossRefGoogle Scholar
  14. Hoppo T, Badylak SF, Jobe BA (2012) A novel esophageal-preserving approach to treat high-grade dysplasia and superficial adenocarcinoma in the presence of chronic gastroesophageal reflux disease. World J Surg 36(10):2390–2393.  https://doi.org/10.1007/s00268-012-1698-6 CrossRefPubMedGoogle Scholar
  15. Hou L, Jin J, Lv J, Chen L, Zhu Y, Liu X (2015) Constitution and in vivo test of micro-porous tubular scaffold for esophageal tissue engineering. J Biomater Appl 30(5):568–578.  https://doi.org/10.1177/0885328215596285 CrossRefPubMedGoogle Scholar
  16. Isch JA, Engum SA, Ruble CA, Davis MM, Grosfeld JL (2001) Patch esophagoplasty using AlloDerm as a tissue scaffold. J Pediatr Surg 36(2):266–268.  https://doi.org/10.1053/jpsu.2001.20685 CrossRefPubMedGoogle Scholar
  17. Jensen T, Blanchette A, Vadasz S, Dave A, Canfarotta M, Sayej WN, Finck C (2015) Biomimetic and synthetic esophageal tissue engineering. Biomaterials 57:133–141.  https://doi.org/10.1016/j.biomaterials.2015.04.004 CrossRefPubMedGoogle Scholar
  18. Jönsson L, Friberg LG, Gatzinsky V, Jennische E, Sandin A, Abrahamsson K (2014) Early regenerative response in the intrathoracic porcine esophagus-the impact of the inflammation. Artif Organs 38(6):439–446.  https://doi.org/10.1111/aor.12216 CrossRefPubMedGoogle Scholar
  19. Kanai N, Yamato M, Ohki T, Yamamoto M, Okano T (2012) Fabricated autologous epidermal cell sheets for the prevention of esophageal stricture after circumferential ESD in a porcine model. Gastrointest Endosc 76(4):873–881.  https://doi.org/10.1016/j.gie.2012.06.017 CrossRefPubMedGoogle Scholar
  20. Kofler K, Ainoedhofer H, Höllwarth ME, Saxena AK (2010) Fluorescence-activated cell sorting of PCK-26 antigen-positive cells enables selection of ovine esophageal epithelial cells with improved viability on scaffolds for esophagus tissue engineering. Pediatr Surg Int 26(1):97–104.  https://doi.org/10.1007/s00383-009-2512-x CrossRefPubMedGoogle Scholar
  21. Kuppan P, Sethuraman S, Krishnan UM (2012) Tissue engineering interventions for esophageal disorders–promises and challenges. Biotechnol Adv 30(6):1481–1492.  https://doi.org/10.1016/j.biotechadv.2012.03.005 CrossRefPubMedGoogle Scholar
  22. Lewis JP, Trobraughfe JR (1964) Haematopoietic stem cells. Nature 204:589–590CrossRefGoogle Scholar
  23. Li N, Lassman BJ, Liu Z, Liboni K, Neu J (2004) Effects of protein deprivation on growth and small intestine morphology are not improved by glutamine or glutamate in gastrostomy-fed rat pups. J Pediatr Gastroenterol Nutr 39(1):28–33CrossRefGoogle Scholar
  24. Londono R, Badylak SF (2015) Regenerative medicine strategies for esophageal repair. Tissue Eng Part B Rev 21(4):393–410.  https://doi.org/10.1089/ten.TEB.2015.0014 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lopes MF, Cabrita A, Ilharco J, Pessa P, Paiva-Carvalho J, Pires A, Patrício J (2006) Esophageal replacement in rat using porcine intestinal submucosa as a patch or a tube-shaped graft. Dis Esophagus 19(4):254–259.  https://doi.org/10.1111/j.1442-2050.2006.00574.x CrossRefPubMedGoogle Scholar
  26. Lynen Jansen P, Klinge U, Anurov M, Titkova S, Mertens PR, Jansen M (2004) Surgical mesh as a scaffold for tissue regeneration in the esophagus. Eur Surg Res 36(2):104–111.  https://doi.org/10.1159/000076650 CrossRefPubMedGoogle Scholar
  27. Maghsoudlou P, Eaton S, De Coppi P (2014) Tissue engineering of the esophagus. Semin Pediatr Surg 23(3):127–134.  https://doi.org/10.1053/j.sempedsurg CrossRefPubMedGoogle Scholar
  28. Marzaro M, Vigolo S, Oselladore B, Conconi MT, Ribatti D, Giuliani S, Nico B, Perrino G, Nussdorfer GG, Parnigotto PP (2006) In vitro and in vivo proposal of an artificial esophagus. J Biomed Mater Res A 77((4):795–801.  https://doi.org/10.1002/jbm.a.30666 CrossRefGoogle Scholar
  29. Metz CN (2003) Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 60(7):1342–1350.  https://doi.org/10.1007/s00018-003-2328-0 CrossRefPubMedGoogle Scholar
  30. Michalopoulos GK (2007) Liver regeneration. J Cell Physiol 213(2):286–300.  https://doi.org/10.1002/jcp.21172 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Miki H, Ando N, Ozawa S, Sato M, Hayashi K, Kitajima M (1999) An artificial esophagus constructed of cultured human esophageal epithelial cells, fibroblasts, polyglycolic acid mesh, and collagen. ASAIO J 45(5):502–508CrossRefGoogle Scholar
  32. Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, Sakakura C, Yamagishi H, Hamuro J, Ikada Y, Otsuji E, Hagiwara A (2008) Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg 136(4):850–859.  https://doi.org/10.1016/j.jtcvs.2008.05.027 CrossRefPubMedGoogle Scholar
  33. Nieponice A, McGrath K, Qureshi I, Beckman EJ, Luketich JD, Gilbert TW, Badylak SF (2009) An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest Endosc 69(2):289–296.  https://doi.org/10.1016/j.gie CrossRefPubMedGoogle Scholar
  34. Nieponice A, Gilbert TW, Johnson SA, Turner NJ, Badylak SF (2013) Bone marrow-derived cells participate in the long-term remodeling in a mouse model of esophageal reconstruction. J Surg Res 182(1):e1–e7.  https://doi.org/10.1016/j.jss.2012.09.029 CrossRefPubMedGoogle Scholar
  35. Nieponice A, Ciotola FF, Nachman F, Jobe BA, Hoppo T, Londono R, Badylak S, Badaloni AE (2014) Patch esophagoplasty: esophageal reconstruction using biologic scaffolds. Ann Thorac Surg 97(1):283–288.  https://doi.org/10.1016/j.athoracsur.2013.08.011 CrossRefPubMedGoogle Scholar
  36. Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, Okano T, Takasaki K (2006) Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut 55(12):1704–1710.  https://doi.org/10.1136/gut.2005.088518 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, Sasaki R, Namiki H, Okano T, Yamamoto M (2012) Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology 143(3):582–588.  https://doi.org/10.1053/j.gastro.2012.04.050 CrossRefPubMedGoogle Scholar
  38. Poghosyan T, Gaujoux S, Sfeir R, Larghero J, Cattan P (2011) Bioartificial oesophagus in the era of tissue engineering. J Pediatr Gastroenterol Nutr 52(1):S16–S17.  https://doi.org/10.1097/MPG.0b013e3182105964 CrossRefPubMedGoogle Scholar
  39. Poghosyan T, Sfeir R, Michaud L, Bruneval P, Domet T, Vanneaux V, Luong-Nguyen M, Gaujoux S, Gottrand F, Larghero J, Cattan P (2015) Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: an experimental study in minipigs. Surgery 158(1):266–277.  https://doi.org/10.1016/j.surg.2015.01.020 CrossRefPubMedGoogle Scholar
  40. Potten CS, Chadwick C, Ijiri K, Tsubouchi S, Hanson WR (1984) The recruitability and cell-cycle state of intestinal stem cells. Int J Cell Cloning 2(2):126–140.  https://doi.org/10.1002/stem.5530020206 CrossRefPubMedGoogle Scholar
  41. Saito M, Sakamoto T, Fujimaki M, Tsukada K, Honda T, Nozaki M (2000) Experimental study of an artificial esophagus using a collagen sponge, a latissimus dorsi muscle flap, and split-thickness skin. Surg Today 30(7):606–613.  https://doi.org/10.1007/s005950070100 CrossRefPubMedGoogle Scholar
  42. Saxena AK (2014) Esophagus tissue engineering: designing and crafting the components for the “hybrid construct” approach. Eur J Pediatr Surg 24(3):246–262.  https://doi.org/10.1055/s-0034-1382261 CrossRefPubMedGoogle Scholar
  43. Saxena AK, Kofler K, Ainödhofer H, Höllwarth ME (2009) Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg 13(6):1037–1043.  https://doi.org/10.1007/s11605-009-0836-4 CrossRefPubMedGoogle Scholar
  44. Saxena AK, Ainoedhofer H, Höllwarth ME (2010a) Culture of ovine esophageal epithelial cells and in vitro esophagus tissue engineering. Tissue Eng Part C Methods 16(1):109–114.  https://doi.org/10.1089/ten.TEC.2009.0145 CrossRefPubMedGoogle Scholar
  45. Saxena AK, Baumgart H, Komann C, Ainoedhofer H, Soltysiak P, Kofler K, Höllwarth ME (2010b) Esophagus tissue engineering: in situ generation of rudimentary tubular vascularized esophageal conduit using the ovine model. J Pediatr Surg 45(5):859–864.  https://doi.org/10.1016/j.jpedsurg.2010.02.005 CrossRefPubMedGoogle Scholar
  46. Shen Q, Shi P, Gao M, Yu X, Liu Y, Luo L, Zhu Y (2013) Progress on materials and scaffold fabrications applied to esophageal tissue engineering. Mater Sci Eng C Mater Biol Appl 33(4):1860–1866.  https://doi.org/10.1016/j.msec.2013.01.064 CrossRefPubMedGoogle Scholar
  47. Sjöqvist S, Jungebluth P, Lim ML, Haag JC, Gustafsson Y, Lemon G, Baiguera S, Burguillos MA, Del Gaudio C, Rodríguez AB, Sotnichenko A, Kublickiene K, Ullman H, Kielstein H, Damberg P, Bianco A, Heuchel R, Zhao Y, Ribatti D, Ibarra C, Joseph B, Taylor DA, Macchiarini P (2014) Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats. Nat Commun 5:3562.  https://doi.org/10.1038/ncomms4562 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Skandalakis JE, Ellis H (2000) Embryologic and anatomic basis of esophageal surgery. Surg Clin North Am 80(1):85–155CrossRefGoogle Scholar
  49. Sweet SC, Wong HH, Webber SA, Horslen S, Guidinger MK, Fine RN, Magee JC (2006) Pediatric transplantation in the United States, 1995–2004. Am J Transplant 6(5 Pt 2):1132–1152.  https://doi.org/10.1111/j.1600-6143.2006.01271.x CrossRefPubMedGoogle Scholar
  50. Takagi R, Murakami D, Kondo M, Ohki T, Sasaki R, Mizutani M, Yamato M, Nishida K, Namiki H, Yamamoto M, Okano T (2010) Fabrication of human oral mucosal epithelial cell sheets for treatment of esophageal ulceration by endoscopic submucosal dissection. Gastrointest Endosc 72(6):1253–1259.  https://doi.org/10.1016/j.gie.2010.08.007 CrossRefPubMedGoogle Scholar
  51. Tan JY, Chua CK, Leong KF, Chian KS, Leong WS, Tan LP (2012) Esophageal tissue engineering: an in-depth review on scaffold design. Biotechnol Bioeng 109(1):1–15.  https://doi.org/10.1002/bit.23323 CrossRefPubMedGoogle Scholar
  52. Urita Y, Komuro H, Chen G, Shinya M, Kaneko S, Kaneko M, Ushida T (2007) Regeneration of the esophagus using gastric acellular matrix: an experimental study in a rat model. Pediatr Surg Int 23(1):21–26.  https://doi.org/10.1007/s00383-006-1799-0 CrossRefPubMedGoogle Scholar
  53. Wei RQ, Tan B, Tan MY, Luo JC, Deng L, Chen XH, Li XQ, Zuo X, Zhi W, Yang P, Xie HQ, Yang ZM (2009) Grafts of porcine small intestinal submucosa with cultured autologous oral mucosal epithelial cells for esophageal repair in a canine model. Exp Biol Med (Maywood) 234(4):453–461.  https://doi.org/10.3181/0901-RM-5 CrossRefGoogle Scholar
  54. Yamamoto Y, Nakamura T, Shimizu Y, Matsumoto K, Takimoto Y, Kiyotani T, Sekine T, Ueda H, Liu Y, Tamura N (1999) Intrathoracic esophageal replacement in the dog with the use of an artificial esophagus composed of a collagen sponge with a double-layered silicone tube. J Thorac Cardiovasc Surg 118(2):276–286.  https://doi.org/10.1016/S0022-5223(99)70218-7 CrossRefPubMedGoogle Scholar
  55. Yamamoto Y, Nakamura T, Shimizu Y, Matsumoto K, Takimoto Y, Liu Y, Ueda H, Sekine T, Tamura N (2000) Intrathoracic esophageal replacement with a collagen sponge--silicone double layer tube: evaluation of omental-pedicle wrapping and prolonged placement of an inner stent. ASAIO J 46(6):734–739CrossRefGoogle Scholar
  56. Zhang L, Li N, des Robert C, Fang M, Liboni K, McMahon R, Caicedo RA, Neu J (2006) Lactobacillus rhamnosus GG decreases lipopolysaccharide-induced systemic inflammation in a gastrostomy-fed infant rat model. J Pediatr Gastroenterol Nutr 42(5):545–552CrossRefGoogle Scholar
  57. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS (2007) Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28(5):861–868.  https://doi.org/10.1016/j.biomaterials.2006.09.051 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology-Head and Neck Surgery, College of MedicineSeoul National UniversitySeoulSouth Korea

Personalised recommendations