Advertisement

Fabrication of Electrochemical-Based Bioelectronic Device and Biosensor Composed of Biomaterial-Nanomaterial Hybrid

  • Mohsen Mohammadniaei
  • Chulhwan Park
  • Junhong Min
  • Hiesang Sohn
  • Taek Lee
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)

Abstract

The field of bioelectronics has paved the way for the development of biochips, biomedical devices, biosensors and biocomputation devices. Various biosensors and biomedical devices have been developed to commercialize laboratory products and transform them into industry products in the clinical, pharmaceutical, environmental fields. Recently, the electrochemical bioelectronic devices that mimicked the functionality of living organisms in nature were applied to the use of bioelectronics device and biosensors. In particular, the electrochemical-based bioelectronic devices and biosensors composed of biomolecule-nanoparticle hybrids have been proposed to generate new functionality as alternatives to silicon-based electronic computation devices, such as information storage, process, computations and detection. In this chapter, we described the recent progress of bioelectronic devices and biosensors based on biomaterial-nanomaterial hybrid.

Keywords

Biomaterial-nanomaterial hybrid Electrochemical bioelectronic device Electrochemical biosensor 

Notes

Acknowledgements

This research was supported by NRF-2018R1D1A1B07049407 and by the Research Grant of Kwangwoon University in 2018.

References

  1. Abi A, Mohammadpour Z, Zuo X, Safavi A (2018) Nucleic acid-based electrochemical nanobiosensors. Biosens Bioelectron 102:479–489.  https://doi.org/10.1016/j.bios.2017.11.019 CrossRefPubMedGoogle Scholar
  2. Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024.  https://doi.org/10.1126/science.7973651 CrossRefPubMedGoogle Scholar
  3. Andre C, Kim SW, Yu X-H, Shanklin J (2013) Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci 110:3191–3196.  https://doi.org/10.1073/pnas.1218769110 CrossRefPubMedGoogle Scholar
  4. Artés JM, Díez-Pérez I, Gorostiza P (2012) Transistor-like behavior of single Metalloprotein junctions. Nano Lett 12:2679–2684.  https://doi.org/10.1021/nl2028969 CrossRefPubMedGoogle Scholar
  5. Arugula MA, Shroff N, Katz E, He Z (2012) Molecular AND logic gate based on bacterial anaerobic respiration. Chem Commun 48:10174–10176.  https://doi.org/10.1039/C2CC35595G CrossRefGoogle Scholar
  6. Ausländer S, Ausländer D, Müller M, Wieland M, Fussenegger M (2012) Programmable single-cell mammalian biocomputers. Nature 487:123.  https://doi.org/10.1038/nature11149 CrossRefPubMedGoogle Scholar
  7. Baker M (2006) New-wave diagnostics. Nat Biotechnol 24:931–938CrossRefGoogle Scholar
  8. Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006a) Elementary arithmetic operations by enzymes: a model for metabolic pathway based computing. Angew Chem Int Ed 45:1572–1576.  https://doi.org/10.1002/anie.200503314 CrossRefGoogle Scholar
  9. Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006b) Logic gates and elementary computing by enzymes. Chem A Eur J 110:8548–8553.  https://doi.org/10.1021/jp0568327 CrossRefGoogle Scholar
  10. Benenson Y (2009) RNA-based computation in live cells. Curr Opin Biotechnol 20:471–478.  https://doi.org/10.1016/j.copbio.2009.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423.  https://doi.org/10.1038/nature02551 CrossRefPubMedGoogle Scholar
  12. Bonnet J, Subsoontorn P, Endy D (2012) Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc Natl Acad Sci 109:8884–8889.  https://doi.org/10.1073/pnas.1202344109 CrossRefPubMedGoogle Scholar
  13. Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D (2013) Amplifying genetic logic gates. Science 340:599–603.  https://doi.org/10.1126/science.1232758 CrossRefPubMedGoogle Scholar
  14. Bychkova V, Shvarev A, Zhou J, Pita M, Katz E (2010) Enzyme logic gate associated with a single responsive microparticle: scaling biocomputing to microsize systems. Chem Commun 46:94–96.  https://doi.org/10.1039/B917611J CrossRefGoogle Scholar
  15. Campolongo MJ, Kahn JS, Cheng W, Yang D, Gupton-Campolongo T, Luo D (2011) Adaptive DNA-based materials for switching, sensing, and logic devices. J Mater Chem 21:6113–6121.  https://doi.org/10.1039/C0JM03854G CrossRefGoogle Scholar
  16. Campuzano S, Torrente-Rodríguez RM, López-Hernández E, Conzuelo F, Granados R, Sánchez-Puelles JM, Pingarrón JM (2014) Magnetobiosensors based on viral protein p19 for MicroRNA determination in cancer cells and tissues. Angew Chem Int Ed 53:6168–6171.  https://doi.org/10.1002/anie.201403270 CrossRefGoogle Scholar
  17. Chen Y-P, Liu B, Lian H-T, Sun X-Y (2011) Preparation and application of urea electrochemical sensor based on chitosan molecularly imprinted films. Electroanalysis 23:1454–1461.  https://doi.org/10.1002/elan.201000693 CrossRefGoogle Scholar
  18. Chen Y-S, Hong M-Y, Huang GS (2012) A protein transistor made of an antibody molecule and two gold nanoparticles. Nat Nanotechnol 7:197.  https://doi.org/10.1038/nnano.2012.7 CrossRefPubMedGoogle Scholar
  19. Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed 48:3268–3272.  https://doi.org/10.1002/anie.200805665 CrossRefGoogle Scholar
  20. Cho W-J, Huang H-J (1998) An Amperometric urea biosensor based on a polyaniline−Perfluorosulfonated ionomer composite electrode. Anal Chem 70:3946–3951.  https://doi.org/10.1021/ac980004a CrossRefGoogle Scholar
  21. Choi J-W, Oh B-K, Kim YJ, Min J (2007) Protein-based biomemory device consisting of the cysteine-modified azurin. Appl Phys Lett 91:263902.  https://doi.org/10.1063/1.2828046 CrossRefGoogle Scholar
  22. Chowdhury AD, Gangopadhyay R, De A (2014) Highly sensitive electrochemical biosensor for glucose, DNA and protein using gold-polyaniline nanocomposites as a common matrix. Sensors Actuators B Chem 190:348–356.  https://doi.org/10.1016/j.snb.2013.08.071 CrossRefGoogle Scholar
  23. Christof MN, Chad AM (2004) Nanobiotechnology: concepts, applications and perspectives. Wiley-VCH, Weinheim, p 491Google Scholar
  24. Chung Y-H, Lee T, Min J, Choi J-W (2011) Investigation of the redox property of a metalloprotein layer self-assembled on various chemical linkers. Colloids Surf B Biointerfaces 87:36–41.  https://doi.org/10.1016/j.colsurfb.2011.04.034 CrossRefPubMedGoogle Scholar
  25. Dai Z, Xiao Y, Yu X, Mai Z, Zhao X, Zou X (2009) Direct electrochemistry of myoglobin based on ionic liquid–clay composite films. Biosens Bioelectron 24:1629–1634.  https://doi.org/10.1016/j.bios.2008.08.032 CrossRefPubMedGoogle Scholar
  26. Dastjerdi A, Fooks AR, Johnson N (2014) Chapter nineteen – oligonucleotide microarray: applications for lyssavirus speciation. Current laboratory techniques in rabies diagnosis, research and prevention. Academic Press, Amsterdam, pp 193–203Google Scholar
  27. de Ruiter G, van der Boom ME (2011) Surface-confined assemblies and polymers for molecular logic. Acc Chem Res 44:563–573.  https://doi.org/10.1021/ar200002v CrossRefPubMedGoogle Scholar
  28. de Silva AP, Uchiyama S (2007) Molecular logic and computing. Nat Nanotechnol 2:399.  https://doi.org/10.1038/nnano.2007.188 CrossRefPubMedGoogle Scholar
  29. Deng H, Shen W, Ren Y, Gao Z (2014) A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline. Biosens Bioelectron 60:195–200.  https://doi.org/10.1016/j.bios.2014.04.023 CrossRefPubMedGoogle Scholar
  30. Deonarine AS, Clark SM, Konermann L (2003) Implementation of a multifunctional logic gate based on folding/unfolding transitions of a protein. Futur Gener Comput Syst 19:87–97.  https://doi.org/10.1016/S0167-739X(02)00110-3 CrossRefGoogle Scholar
  31. Dolatabadi JEN, Mashinchian O, Ayoubi B, Jamali AA, Mobed A, Losic D, Omidi Y, de la Guardia M (2011) Optical and electrochemical DNA nanobiosensors. TrAC Trends Anal Chem 30:459–472.  https://doi.org/10.1016/j.trac.2010.11.010 CrossRefGoogle Scholar
  32. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199CrossRefGoogle Scholar
  33. Dundas CM, Demonte D, Park S (2013) Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 97:9343–9353.  https://doi.org/10.1007/s00253-013-5232-z CrossRefPubMedGoogle Scholar
  34. Elbaz J, Moshe M, Willner I (2009a) Coherent activation of DNA tweezers: a “SET–RESET” logic system. Angew Chem Int Ed 48:3834–3837.  https://doi.org/10.1002/anie.200805819 CrossRefGoogle Scholar
  35. Elbaz J, Wang Z-G, Orbach R, Willner I (2009b) pH-stimulated concurrent mechanical activation of two DNA “tweezers”. A “SET−RESET” logic gate system. Nano Lett 9:4510–4514.  https://doi.org/10.1021/nl902859m CrossRefPubMedGoogle Scholar
  36. Elbaz J, Wang F, Remacle F, Willner I (2012) pH-programmable DNA logic arrays powered by modular DNAzyme libraries. Nano Lett 12:6049–6054.  https://doi.org/10.1021/nl300051g CrossRefPubMedGoogle Scholar
  37. Farzadfard F, Lu TK (2014) Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346:1256272.  https://doi.org/10.1126/science.1256272 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Freeman R, Finder T, Willner I (2009) Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angew Chem Int Ed 48:7818–7821.  https://doi.org/10.1002/anie.200902395 CrossRefGoogle Scholar
  39. Frezza BM, Cockroft SL, Ghadiri MR (2007) Modular multi-level circuits from immobilized DNA-based logic gates. J Am Chem Soc 129:14875–14879.  https://doi.org/10.1021/ja0710149 CrossRefPubMedGoogle Scholar
  40. Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S (2008) Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett 8:1791–1797.  https://doi.org/10.1021/nl0722830 CrossRefPubMedGoogle Scholar
  41. Gao W, Wei X, Wang X, Cui G, Liu Z, Tang B (2016) A competitive coordination-based CeO2 nanowire-DNA nanosensor: fast and selective detection of hydrogen peroxide in living cells and in vivo. Chem Commun 52:3643–3646.  https://doi.org/10.1039/C6CC00112B CrossRefGoogle Scholar
  42. Gdor E, Katz E, Mandler D (2013) Biomolecular AND logic gate based on immobilized enzymes with precise spatial separation controlled by scanning electrochemical microscopy. J Phys Chem B 117:16058–16065.  https://doi.org/10.1021/jp4095672 CrossRefPubMedGoogle Scholar
  43. Gianneschi NC, Ghadiri MR (2007) Design of Molecular Logic Devices Based on a programmable DNA-regulated semisynthetic enzyme. Angew Chem Int Ed 46:3955–3958.  https://doi.org/10.1002/anie.200700047 CrossRefGoogle Scholar
  44. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722.  https://doi.org/10.1038/nrm2240 CrossRefPubMedGoogle Scholar
  45. González M n, Argaraña CE, Fidelio GD (1999) Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng 16:67–72.  https://doi.org/10.1016/S1050-3862(99)00041-8 CrossRefPubMedGoogle Scholar
  46. Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I (1999) Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 400:91–108.  https://doi.org/10.1016/S0003-2670(99)00610-8 CrossRefGoogle Scholar
  47. Grabow WW, Jaeger L (2014) RNA self-assembly and RNA nanotechnology. Acc Chem Res 47:1871–1880.  https://doi.org/10.1021/ar500076k CrossRefPubMedGoogle Scholar
  48. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors - sensor principles and architectures. Sensors 8:1400CrossRefGoogle Scholar
  49. Gromiha MM, Nagarajan R (2013) Chapter three - computational approaches for predicting the binding sites and understanding the recognition mechanism of protein–DNA complexes. In: Donev R (ed) Advances in Protein Chemistry Structural Biology. Academic Press, New York, pp 65–99Google Scholar
  50. Gu T, Liu Y, Zhang J, Hasebe Y (2009) Amperometric hydrogen peroxide biosensor based on immobilization of DNA-Cu(II) in DNA/chitosan polyion complex membrane. J Environ Sci 21:S56–S59.  https://doi.org/10.1016/S1001-0742(09)60037-1 CrossRefGoogle Scholar
  51. Haque F, Shu D, Shu Y, Shlyakhtenko LS, Rychahou PG, Mark Evers B, Guo P (2012) Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7:245–257.  https://doi.org/10.1016/j.nantod.2012.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  52. He H-Z, Chan DS-H, Leung C-H, Ma D-L (2013) G-quadruplexes for luminescent sensing and logic gates. Nucleic Acids Res 41:4345–4359.  https://doi.org/10.1093/nar/gkt108 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Hild W, Pollinger K, Caporale A, Cabrele C, Keller M, Pluym N, Buschauer A, Rachel R, Tessmar J, Breunig M, Goepferich A (2010) G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proc Natl Acad Sci 107:10667–10672.  https://doi.org/10.1073/pnas.0912782107 CrossRefPubMedGoogle Scholar
  54. Huang Y, Duan X, Cui Y, Lauhon LJ, Kim K-H, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317.  https://doi.org/10.1126/science.1066192 CrossRefPubMedGoogle Scholar
  55. Hunt HK, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale 2:1544–1559.  https://doi.org/10.1039/C0NR00201A CrossRefPubMedGoogle Scholar
  56. Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K, Hamachi I (2014) Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat Chem 6:511.  https://doi.org/10.1038/nchem.1937 CrossRefPubMedGoogle Scholar
  57. Inouye M, Ikeda R, Takase M, Tsuri T, Chiba J (2005) Single-nucleotide polymorphism detection with “wire-like” DNA probes that display quasi “on–off” digital action. Proc Natl Acad Sci USA 102:11606–11610.  https://doi.org/10.1073/pnas.0502078102 CrossRefPubMedGoogle Scholar
  58. Itamar W, Eugenii K (2005) Bioelectronics: from theory to applications. Wiley-VCH, WeinheimGoogle Scholar
  59. Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 16:531–543.  https://doi.org/10.1016/j.sbi.2006.07.001 CrossRefPubMedGoogle Scholar
  60. Jensen PS, Chi Q, Zhang J, Ulstrup J (2009) Long-range interfacial electrochemical Electron transfer of Pseudomonas aeruginosa Azurin−gold nanoparticle hybrid systems. J Phys Chem C 113:13993–14000.  https://doi.org/10.1021/jp902611x CrossRefGoogle Scholar
  61. Jia N, Lian Q, Wang Z, Shen H (2009) A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin incorporated in PEO–PPO–PEO triblock copolymer film. Sensors Actuators B Chem 137:230–234.  https://doi.org/10.1016/j.snb.2008.10.011 CrossRefGoogle Scholar
  62. Jolly P, Estrela P, Ladomery M (2016) Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers. Essays Biochem 60:27–35.  https://doi.org/10.1042/ebc20150004 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kafi AKM, Fan Y, Shin H-K, Kwon Y-S (2006) Hydrogen peroxide biosensor based on DNA–Hb modified gold electrode. Thin Solid Films 499:420–424.  https://doi.org/10.1016/j.tsf.2005.06.073 CrossRefGoogle Scholar
  64. Katz E (2015) Biocomputing – tools, aims, perspectives. Curr Opin Biotechnol 34:202–208.  https://doi.org/10.1016/j.copbio.2015.02.011 CrossRefPubMedGoogle Scholar
  65. Katz E, Privman V (2010) Enzyme-based logic systems for information processing. Chem Soc Rev 39:1835–1857.  https://doi.org/10.1039/B806038J CrossRefPubMedGoogle Scholar
  66. Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Science 302:1380–1382.  https://doi.org/10.1126/science.1091022 CrossRefPubMedGoogle Scholar
  67. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84:685–707.  https://doi.org/10.1021/ac202878q CrossRefPubMedGoogle Scholar
  68. Ko Y, Kim Y, Baek H, Cho J (2011) Electrically Bistable properties of layer-by-layer assembled multilayers based on protein nanoparticles. ACS Nano 5:9918–9926.  https://doi.org/10.1021/nn2036939 CrossRefPubMedGoogle Scholar
  69. Komathi S, Gopalan AI, Kim S-K, Anand GS, Lee K-P (2013) Fabrication of horseradish peroxidase immobilized poly(N-[3-(trimethoxy silyl)propyl]aniline) gold nanorods film modified electrode and electrochemical hydrogen peroxide sensing. Electrochim Acta 92:71–78.  https://doi.org/10.1016/j.electacta.2013.01.032 CrossRefGoogle Scholar
  70. Labib M, Khan N, Ghobadloo SM, Cheng J, Pezacki JP, Berezovski MV (2013) Three-mode electrochemical sensing of ultralow MicroRNA levels. J Am Chem Soc 135:3027–3038.  https://doi.org/10.1021/ja308216z CrossRefPubMedGoogle Scholar
  71. Lee SW, Chang W-J, Bashir R, Koo Y-M (2007) “Bottom-up” approach for implementing nano/microstructure using biological and chemical interactions. Biotechnol Bioprocess Eng 12:185.  https://doi.org/10.1007/bf02931092 CrossRefGoogle Scholar
  72. Lee T, Kim SU, Min J, Choi JW (2010) Multilevel biomemory device consisting of recombinant Azurin/cytochrome c. Adv Mater 22:510–514.  https://doi.org/10.1002/adma.200902288 CrossRefPubMedGoogle Scholar
  73. Lee T, Min J, Kim S-U, Choi J-W (2011a) Multifunctional 4-bit biomemory chip consisting of recombinant azurin variants. Biomaterials 32:3815–3821.  https://doi.org/10.1016/j.biomaterials.2011.01.072 CrossRefPubMedGoogle Scholar
  74. Lee T, Yoo SY, Chung YH, Min J, Choi JW (2011b) Signal enhancement of electrochemical biomemory device composed of recombinant Azurin/gold nanoparticle. Electroanalysis 23:2023–2029.  https://doi.org/10.1002/elan.201100182 CrossRefGoogle Scholar
  75. Lee HJ, Oh JH, Oh JM, Park JM, Lee JG, Kim MS, Kim YJ, Kang HJ, Jeong J, Kim SI, Lee SS, Choi JW, Huh N (2013) Efficient isolation and accurate in situ analysis of circulating tumor cells using detachable beads and a high-pore-density filter. Angew Chem Int Ed 52:8337–8340.  https://doi.org/10.1002/anie.201302278 CrossRefGoogle Scholar
  76. Lee H, Park J-E, Nam J-M (2014a) Bio-barcode gel assay for microRNA. Nat Commun 5(5):3367.  https://doi.org/10.1038/ncomms4367 CrossRefPubMedGoogle Scholar
  77. Lee T, Yagati AK, Min J, Choi JW (2014b) Bioprocessing device composed of protein/DNA/inorganic material hybrid. Adv Funct Mater 24:1781–1789.  https://doi.org/10.1002/adfm.201302397 CrossRefGoogle Scholar
  78. Lee T, Chung Y-H, Yoon J, Min J, Choi J-W (2014c) Fusion protein-based biofilm fabrication composed of recombinant azurin–myoglobin for dual-level biomemory application. Appl Surf Sci 320:448–454.  https://doi.org/10.1016/j.apsusc.2014.09.020 CrossRefGoogle Scholar
  79. Lee T, Yagati AK, Pi F, Sharma A, Choi J-W, Guo P (2015) Construction of RNA–quantum dot chimera for nanoscale resistive biomemory application. ACS Nano 9:6675–6682.  https://doi.org/10.1021/acsnano.5b03269 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Li H, Liu S, Dai Z, Bao J, Yang X (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547CrossRefGoogle Scholar
  81. Li X, Sun L, Ding T (2011) Multiplexed sensing of mercury(II) and silver(I) ions: a new class of DNA electrochemiluminescent-molecular logic gates. Biosens Bioelectron 26:3570–3576.  https://doi.org/10.1016/j.bios.2011.02.003 CrossRefPubMedGoogle Scholar
  82. Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S (2016) Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res 44:7373–7384.  https://doi.org/10.1093/nar/gkw634 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Liu Q, Wang L, Frutos AG, Condon AE, Corn RM, Smith LM (2000) DNA computing on surfaces. Nature 403:175.  https://doi.org/10.1038/35003155 CrossRefPubMedGoogle Scholar
  84. Liu G, Wan Y, Gau V, Zhang J, Wang L, Song S, Fan C (2008) An enzyme-based E-DNA sensor for sequence-specific detection of Femtomolar DNA targets. J Am Chem Soc 130:6820–6825.  https://doi.org/10.1021/ja800554t CrossRefPubMedGoogle Scholar
  85. Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, Lin X, Chen Y (2012a) Development of electrochemical DNA biosensors. TrAC Trends Anal Chem 37:101–111.  https://doi.org/10.1016/j.trac.2012.03.008 CrossRefGoogle Scholar
  86. Liu X, Aizen R, Freeman R, Yehezkeli O, Willner I (2012b) Multiplexed Aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations. ACS Nano 6:3553–3563.  https://doi.org/10.1021/nn300598q CrossRefPubMedGoogle Scholar
  87. Liu B, Sun Z, Huang P-JJ, Liu J (2015a) Hydrogen peroxide displacing DNA from Nanoceria: mechanism and detection of glucose in serum. J Am Chem Soc 137:1290–1295.  https://doi.org/10.1021/ja511444e CrossRefPubMedGoogle Scholar
  88. Liu L, Song C, Zhang Z, Yang J, Zhou L, Zhang X, Xie G (2015b) Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction. Biosens Bioelectron 70:351–357.  https://doi.org/10.1016/j.bios.2015.03.051 CrossRefPubMedGoogle Scholar
  89. Liu S, Gong H, Wang Y, Wang L (2016) Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification. Biosens Bioelectron 77:818–823.  https://doi.org/10.1016/j.bios.2015.10.056 CrossRefPubMedGoogle Scholar
  90. Liu H, Weng L, Yang C (2017) A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta 184:1267–1283.  https://doi.org/10.1007/s00604-017-2179-2 CrossRefGoogle Scholar
  91. Lu W, Suo Z (2002) Symmetry breaking in self-assembled monolayers on solid surfaces: anisotropic surface stress. Phys Rev B 65:085401CrossRefGoogle Scholar
  92. Luo Z, Weiss DE, Liu Q, Tian B (2018) Biomimetic approaches toward smart bio-hybrid systems. Nano Res 11:3009.  https://doi.org/10.1007/s12274-018-2004-1 CrossRefGoogle Scholar
  93. Ma L, Yuan R, Chai Y, Chen S (2009) Amperometric hydrogen peroxide biosensor based on the immobilization of HRP on DNA–silver nanohybrids and PDDA-protected gold nanoparticles. J Mol Catal B Enzym 56:215–220.  https://doi.org/10.1016/j.molcatb.2008.05.007 CrossRefGoogle Scholar
  94. Maddocks S, Jenkins R (2017) Chapter 4 – Quantitative PCR: things to consider. In: Understanding PCR. Academic, Boston, pp 45–52CrossRefGoogle Scholar
  95. Mailloux S, Halamek J, Katz E (2014) A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks. Analyst 139:982–986.  https://doi.org/10.1039/C3AN02162A CrossRefPubMedGoogle Scholar
  96. Malekzad H, Sahandi Zangabad P, Mirshekari H, Karimi M, Hamblin Michael R (2017) Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev 6(3):301–329.  https://doi.org/10.1515/ntrev-20160014
  97. Meng F, Jiang L, Zheng K, Goh CF, Lim S, Hng HH, Ma J, Boey F, Chen X (2011) Protein-based Memristive Nanodevices. Small 7:3016–3020.  https://doi.org/10.1002/smll.201101494 CrossRefPubMedGoogle Scholar
  98. Michael CP (2007) Molecular electronics: from principles to practice. Wiley, West SussexGoogle Scholar
  99. Millan KM, Saraullo A, Mikkelsen SR (1994) Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem 66:2943–2948.  https://doi.org/10.1021/ac00090a023 CrossRefPubMedGoogle Scholar
  100. Min J, Lee T, Oh S-M, Kim H, Choi J-W (2010) Electrochemical biomemory device consisting of recombinant protein molecules. Biotechnol Bioprocess Eng 15:30–39.  https://doi.org/10.1007/s12257-009-3074-4 CrossRefGoogle Scholar
  101. Mitsumasa I, Young-Soo K, Takhee L (2010) Nanoscale Interface for organic electronics. World Scientific Publisher, SingaporeGoogle Scholar
  102. Mohammadniaei M, Lee T, Yoon J, Lee D, Choi J-W (2017) Electrochemical nucleic acid detection based on parallel structural dsDNA/recombinant azurin hybrid. Biosens Bioelectron 98:292–298.  https://doi.org/10.1016/j.bios.2017.07.005 CrossRefPubMedGoogle Scholar
  103. Mohammadniaei M, Lee T, Yoon J, Choi J-W (2018) Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP Nanopattern. J Biotechnol 274:40CrossRefGoogle Scholar
  104. Muramatsu S, Kinbara K, Taguchi H, Ishii N, Aida T (2006) Semibiological molecular machine with an implemented “AND” logic gate for regulation of protein folding. J Am Chem Soc 128:3764–3769.  https://doi.org/10.1021/ja057604t CrossRefPubMedGoogle Scholar
  105. Nagase S, Ohkoshi N, Ueda A, Aoyagi K, Koyama A (1997) Hydrogen peroxide interferes with detection of nitric oxide by an electrochemical method. Clin Chem 43:1246–1246PubMedGoogle Scholar
  106. Nikitin MP, Shipunova VO, Deyev SM, Nikitin PI (2014) Biocomputing based on particle disassembly. Nat Nanotechnol 9:716.  https://doi.org/10.1038/nnano.2014.156 CrossRefPubMedGoogle Scholar
  107. Nowak C, Schach D, Gebert J, Grosserueschkamp M, Gennis RB, Ferguson-Miller S, Knoll W, Walz D, Naumann RLC (2011) Oriented immobilization and electron transfer to the cytochrome c oxidase. J Solid State Electrochem 15:105–114.  https://doi.org/10.1007/s10008-010-1032-x CrossRefGoogle Scholar
  108. Noy A (2011) Bionanoelectronics. Adv Mater 23:807–820.  https://doi.org/10.1002/adma.201003751 CrossRefPubMedGoogle Scholar
  109. Odenthal KJ, Gooding JJ (2007) An introduction to electrochemical DNAbiosensors. Analyst 132:603–610.  https://doi.org/10.1039/B701816A CrossRefPubMedGoogle Scholar
  110. Offenhäusser A, Rinaldi R (2009) Nanobioelectronics – for electronics, biology, and medicine. Springer, New YorkCrossRefGoogle Scholar
  111. Ogihara M, Ray A (2000) DNA computing on a chip. Nature 403:143.  https://doi.org/10.1038/35003071 CrossRefPubMedGoogle Scholar
  112. Okamoto A, Tanaka K, Saito I (2004) DNA logic gates. J Am Chem Soc 126:9458–9463.  https://doi.org/10.1021/ja047628k CrossRefPubMedGoogle Scholar
  113. Palanisamy S, Cheemalapati S, Chen S-M (2012) Highly sensitive and selective hydrogen peroxide biosensor based on hemoglobin immobilized at multiwalled carbon nanotubes–zinc oxide composite electrode. Anal Biochem 429:108–115.  https://doi.org/10.1016/j.ab.2012.07.001 CrossRefPubMedGoogle Scholar
  114. Paleček E, Jelen F (2002) Electrochemistry of nucleic acids and development of DNA sensors. Crit Rev Anal Chem 32:261–270.  https://doi.org/10.1080/10408340290765560 CrossRefGoogle Scholar
  115. Pan S, Rothberg L (2005) Chemical control of electrode functionalization for detection of DNA hybridization by electrochemical impedance spectroscopy. Langmuir 21:1022–1027.  https://doi.org/10.1021/la048083a CrossRefPubMedGoogle Scholar
  116. Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866.  https://doi.org/10.1016/j.electacta.2008.03.005 CrossRefGoogle Scholar
  117. Pita M, Krämer M, Zhou J, Poghossian A, Schöning MJ, Fernández VM, Katz E (2008) Optoelectronic properties of nanostructured ensembles controlled by biomolecular logic systems. ACS Nano 2:2160–2166.  https://doi.org/10.1021/nn8004558 CrossRefPubMedGoogle Scholar
  118. Pita M, Tam TK, Minko S, Katz E (2009a) Dual Magnetobiochemical logic control of electrochemical processes based on local interfacial pH changes. ACS Appl Mater Interfaces 1:1166–1168.  https://doi.org/10.1021/am900185c CrossRefPubMedGoogle Scholar
  119. Pita M, Zhou J, Manesh KM, Halámek J, Katz E, Wang J (2009b) Enzyme logic gates for assessing physiological conditions during an injury: towards digital sensors and actuators. Sensors Actuators B Chem 139:631–636.  https://doi.org/10.1016/j.snb.2009.03.001 CrossRefGoogle Scholar
  120. Prokup A, Hemphill J, Deiters A (2012) DNA computation: a photochemically controlled AND gate. J Am Chem Soc 134:3810–3815.  https://doi.org/10.1021/ja210050s CrossRefPubMedGoogle Scholar
  121. Pumera M, Sánchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sensors Actuators B Chem 123:1195–1205.  https://doi.org/10.1016/j.snb.2006.11.016 CrossRefGoogle Scholar
  122. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–1201.  https://doi.org/10.1126/science.1200520 CrossRefPubMedGoogle Scholar
  123. Qian L, Winfree E, Bruck J (2011) Neural network computation with DNA strand displacement cascades. Nature 475:368.  https://doi.org/10.1038/nature10262 CrossRefPubMedGoogle Scholar
  124. Qiu M, Khisamutdinov E, Zhao Z, Pan C, Choi J-W, Leontis NB, Guo P (2013) RNA nanotechnology for computer design and in vivo computation. Philos Trans R Soc A Math Phys Eng Sci 371:20120310.  https://doi.org/10.1098/rsta.2012.0310 CrossRefGoogle Scholar
  125. Radhakrishnan K, Tripathy J, Raichur AM (2013) Dual enzyme responsive microcapsules simulating an “OR” logic gate for biologically triggered drug delivery applications. Chem Commun 49:5390–5392.  https://doi.org/10.1039/C3CC42017E CrossRefGoogle Scholar
  126. Ramanavičius A, Ramanavičienė A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta 51:6025–6037.  https://doi.org/10.1016/j.electacta.2005.11.052 CrossRefGoogle Scholar
  127. Ramnani P, Gao Y, Ozsoz M, Mulchandani A (2013) Electronic detection of MicroRNA at Attomolar level with high specificity. Anal Chem 85:8061–8064.  https://doi.org/10.1021/ac4018346 CrossRefPubMedGoogle Scholar
  128. Rao SV, Anderson KW, Bachas LG (1998) Oriented immobilization of proteins. Microchim Acta 128:127–143.  https://doi.org/10.1007/bf01243043 CrossRefGoogle Scholar
  129. Ren X, Yan J, Wu D, Wei Q, Wan Y (2017) Nanobody-based apolipoprotein E Immunosensor for point-of-care testing. ACS Sensors 2:1267–1271.  https://doi.org/10.1021/acssensors.7b00495 CrossRefPubMedGoogle Scholar
  130. Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, Benenson Y (2007) A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol 25:795.  https://doi.org/10.1038/nbt1307 CrossRefPubMedGoogle Scholar
  131. Robles-Águila MJ, Pérez KS, Stojanoff V, Juárez-Santiesteban H, Silva-González R, Moreno A (2014) Design of molecular devices based on metalloproteins: a new approach. J Mater Sci Mater Electron 25:1354–1360.  https://doi.org/10.1007/s10854-014-1734-4 CrossRefGoogle Scholar
  132. Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G, Galleri G, Nuvoli S, Bagella P, Demartis M, Fiore V, Manetti R, Serra P (2016) Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors 16:780CrossRefGoogle Scholar
  133. Rojkind M, Domínguez-Rosales J-A, Nieto N, Greenwel P (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci 59:1872–1891.  https://doi.org/10.1007/pl00012511 CrossRefPubMedGoogle Scholar
  134. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763.  https://doi.org/10.1039/B714449K CrossRefPubMedGoogle Scholar
  135. Safavi A, Farjami F (2010) Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film. Anal Biochem 402:20–25.  https://doi.org/10.1016/j.ab.2010.03.013 CrossRefPubMedGoogle Scholar
  136. Sarkar D, Liu W, Xie X, Anselmo AC, Mitragotri S, Banerjee K (2014) MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8:3992–4003.  https://doi.org/10.1021/nn5009148 CrossRefPubMedGoogle Scholar
  137. Schalkwijk J, van den Berg WB, van de Putte LBA, Joosten LAB (1986) An experimental model for hydrogen peroxide–induced tissue damage. Effects of a single inflammatory mediator on (peri)articular tissues. Arthritis Rheum 29:532–538.  https://doi.org/10.1002/art.1780290411 CrossRefPubMedGoogle Scholar
  138. Schwartz DK (2001) Mechanisms and kinetics of self-assembled monolayer formation. Annu Rev Phys Chem 52:107–137.  https://doi.org/10.1146/annurev.physchem.52.1.107 CrossRefPubMedGoogle Scholar
  139. Schwarzkopf M, Pierce NA (2016) Multiplexed miRNA northern blots via hybridization chain reaction. Nucleic Acids Res 44:e129.  https://doi.org/10.1093/nar/gkw503 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588.  https://doi.org/10.1126/science.1132493 CrossRefPubMedGoogle Scholar
  141. Shi L, Chu Z, Liu Y, Jin W, Chen X (2013) Facile synthesis of hierarchically aloe-like gold micro/nanostructures for ultrasensitive DNA recognition. Biosens Bioelectron 49:184–191.  https://doi.org/10.1016/j.bios.2013.05.012 CrossRefPubMedGoogle Scholar
  142. Singh P, Pandey SK, Singh J, Srivastava S, Sachan S, Singh SK (2016) Biomedical perspective of electrochemical Nanobiosensor. Nano-Micro Lett 8:193–203.  https://doi.org/10.1007/s40820-015-0077-x CrossRefGoogle Scholar
  143. Song Y, Wan L, Wang Y, Zhao S, Hou H, Wang L (2012) Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode. Bioelectrochemistry 85:29–35.  https://doi.org/10.1016/j.bioelechem.2011.11.007 CrossRefPubMedGoogle Scholar
  144. Song Y, Liu H, Wan L, Wang Y, Hou H, Wang L (2013) Direct electrochemistry of cytochrome c based on poly(diallyldimethylammonium chloride)- graphene Nanosheets/gold nanoparticles hybrid nanocomposites and its biosensing. Electroanalysis 25:1400–1409.  https://doi.org/10.1002/elan.201200524 CrossRefGoogle Scholar
  145. Strack G, Ornatska M, Pita M, Katz E (2008a) Biocomputing security system: concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J Am Chem Soc 130:4234–4235.  https://doi.org/10.1021/ja7114713 CrossRefPubMedGoogle Scholar
  146. Strack G, Pita M, Ornatska M, Katz E (2008b) Boolean logic gates that use enzymes as input signals. Chembiochem 9:1260–1266.  https://doi.org/10.1002/cbic.200700762 CrossRefPubMedGoogle Scholar
  147. Strukov DB, Kohlstedt H (2012) Resistive switching phenomena in thin films: materials, devices, and applications. MRS Bull 37:108–114.  https://doi.org/10.1557/mrs.2012.2 CrossRefGoogle Scholar
  148. Suárez G, Santschi C, Martin OJF, Slaveykova VI (2013) Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquaticcells. Biosens Bioelectron 42:385–390.  https://doi.org/10.1016/j.bios.2012.10.083 CrossRefPubMedGoogle Scholar
  149. Tamayo J, Kosaka PM, Ruz JJ, San Paulo A, Calleja M (2013) Biosensors based on nanomechanical systems. Chem Soc Rev 42:1287–1311.  https://doi.org/10.1039/C2CS35293A CrossRefPubMedGoogle Scholar
  150. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical Biosensors: recommended definitions and classification. Biosensors Bioelectron 16:121–131.  https://doi.org/10.1016/S0956-5663(01)00115-4 CrossRefGoogle Scholar
  151. Tomohiro M, Satoshi S, Masaaki T (2004) Novel reconfigurable logic gates using spin metal–oxide–semiconductor field-effect transistors. Jpn J Appl Phys 43:6032CrossRefGoogle Scholar
  152. Trifonov A, Sharon E, Tel-Vered R, Kahn JS, Willner I (2016) Application of the hybridization chain reaction on electrodes for the amplified and parallel electrochemical analysis of DNA. J Phys Chem C 120:15743–15752.  https://doi.org/10.1021/acs.jpcc.5b11308 CrossRefGoogle Scholar
  153. Tseng RJ, Tsai C, Ma L, Ouyang J, Ozkan CS, Yang Y (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotechnol 1:72.  https://doi.org/10.1038/nnano.2006.55 CrossRefPubMedGoogle Scholar
  154. Umasankar Y, Unnikrishnan B, Chen S-M, Ting T-W (2012) Graphene impregnated with horseradish peroxidase multimer for the determination of hydrogen peroxide. Anal Methods 4:3653–3660.  https://doi.org/10.1039/C2AY25276G CrossRefGoogle Scholar
  155. Vestergaard M, Kerman K, Tamiya E (2007) An overview of label-free electrochemical protein sensors. Sensors 7:3442CrossRefGoogle Scholar
  156. Wan Q, Song H, Shu H, Wang Z, Zou J, Yang N (2013) In situ synthesized gold nanoparticles for direct electrochemistry of horseradish peroxidase. Colloids Surf B Biointerfaces 104:181–185.  https://doi.org/10.1016/j.colsurfb.2012.12.009 CrossRefPubMedGoogle Scholar
  157. Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469:63–71.  https://doi.org/10.1016/S0003-2670(01)01399-X CrossRefGoogle Scholar
  158. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14.  https://doi.org/10.1002/elan.200403113 CrossRefGoogle Scholar
  159. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825.  https://doi.org/10.1021/cr068123a CrossRefPubMedGoogle Scholar
  160. Wang R, Zhang J, Hu Y (2011) Liquid phase deposition of hemoglobin/SDS/TiO2 hybrid film preserving photoelectrochemical activity. Bioelectrochemistry 81:34–38.  https://doi.org/10.1016/j.bioelechem.2011.01.003 CrossRefPubMedGoogle Scholar
  161. Wang Z, Ning L, Duan A, Zhu X, Wang H, Li G (2012) A set of logic gates fabricated with G-quadruplex assembled at an electrode surface. Chem Commun 48:7507–7509.  https://doi.org/10.1039/C2CC33088A CrossRefGoogle Scholar
  162. Wang Y, Zhang H, Yao D, Pu J, Zhang Y, Gao X, Sun Y (2013) Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide. J Solid State Electrochem 17:881–887.  https://doi.org/10.1007/s10008-012-1939-5 CrossRefGoogle Scholar
  163. Wang Y-H, Huang K-J, Wu X (2017) Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens Bioelectron 97:305–316.  https://doi.org/10.1016/j.bios.2017.06.011 CrossRefPubMedGoogle Scholar
  164. Weber W, Schoenmakers R, Keller B, Gitzinger M, Grau T, Daoud-El Baba M, Sander P, Fussenegger M (2008) A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc Natl Acad Sci 105:9994–9998.  https://doi.org/10.1073/pnas.0800663105 CrossRefPubMedGoogle Scholar
  165. Wen Y, Pei H, Shen Y, Xi J, Lin M, Lu N, Shen X, Li J, Fan C (2012) DNA nanostructure-based interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Sci Rep 2(2):867.  https://doi.org/10.1038/srep00867 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218. https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E CrossRefGoogle Scholar
  167. Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322:456–460.  https://doi.org/10.1126/science.1160311 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Wong LS, Khan F, Micklefield J (2009) Selective covalent protein immobilization: strategies and applications. Chem Rev 109:4025–4053.  https://doi.org/10.1021/cr8004668 CrossRefPubMedGoogle Scholar
  169. Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997.  https://doi.org/10.1039/C4CS00370E CrossRefPubMedGoogle Scholar
  170. Wu S, Zhao H, Ju H, Shi C, Zhao J (2006) Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem Commun 8:1197–1203.  https://doi.org/10.1016/j.elecom.2006.05.013 CrossRefGoogle Scholar
  171. Wu S-H, Tang Y, Chen L, Ma X-G, Tian S-M, Sun J-J (2015) Amplified electrochemical hydrogen peroxide reduction based on hemin/G-quadruplex DNAzyme as electrocatalyst at gold particles modified heated copper disk electrode. Biosens Bioelectron 73:41–46.  https://doi.org/10.1016/j.bios.2015.05.039 CrossRefPubMedGoogle Scholar
  172. Xiang C, Zou Y, Sun L-X, Xu F (2008) Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem Commun 10:38–41.  https://doi.org/10.1016/j.elecom.2007.10.030 CrossRefGoogle Scholar
  173. Xie Z, Liu SJ, Bleris L, Benenson Y (2010) Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res 38:2692–2701.  https://doi.org/10.1093/nar/gkq117 CrossRefPubMedPubMedCentralGoogle Scholar
  174. Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y (2011) Multi-input RNAi-based logic circuit for identification of specific Cancer cells. Science 333:1307–1311.  https://doi.org/10.1126/science.1205527 CrossRefPubMedGoogle Scholar
  175. Xu J, Shang F, Luong JHT, Razeeb KM, Glennon JD (2010) Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosens Bioelectron 25:1313–1318.  https://doi.org/10.1016/j.bios.2009.10.018 CrossRefPubMedGoogle Scholar
  176. Yagati AK, Kim S-U, Min J, Choi J-W (2009a) Multi-bit biomemory consisting of recombinant protein variants, azurin. Biosens Bioelectron 24:1503–1507.  https://doi.org/10.1016/j.bios.2008.07.080 CrossRefPubMedGoogle Scholar
  177. Yagati AK, Kim S-U, Min J, Choi J-W (2009b) Write-once–read-many-times (WORM) biomemory device consisting of cysteine modified ferredoxin. Electrochem Commun 11:854–858.  https://doi.org/10.1016/j.elecom.2009.02.014 CrossRefGoogle Scholar
  178. Yagati AK, Kim S-U, Min J, Choi J-W (2010) Ferredoxin molecular thin film with intrinsic switching mechanism for biomemory application. J Nanosci Nanotechnol 10:3220–3223.  https://doi.org/10.1166/jnn.2010.2229 CrossRefPubMedGoogle Scholar
  179. Yagati AK, Lee T, Min J, Choi J-W (2012) Electrochemical performance of gold nanoparticle–cytochrome c hybrid interface for H2O2 detection. Colloids Surf B Biointerfaces 92:161–167.  https://doi.org/10.1016/j.colsurfb.2011.11.035 CrossRefPubMedGoogle Scholar
  180. Yagati AK, Lee T, Min J, Choi J-W (2013) An enzymatic biosensor for hydrogen peroxide based on CeO2 nanostructure electrodeposited on ITO surface. Biosens Bioelectron 47:385–390.  https://doi.org/10.1016/j.bios.2013.03.035 CrossRefPubMedGoogle Scholar
  181. Yagati AK, Min J, Cho S (2014) Electrosynthesis of ERGO-NP nanocomposite films for Bioelectrocatalysis of horseradish peroxidase towards H2O2. J Electrochem Soc 161:G133–G140.  https://doi.org/10.1149/2.1001414jes CrossRefGoogle Scholar
  182. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318.  https://doi.org/10.1038/nature06451 CrossRefPubMedGoogle Scholar
  183. Yoo S-Y, Lee T, Chung Y-H, Min J, Choi J-W (2011) Fabrication of biofilm in nanoscale consisting of cytochrome f/2-MAA bilayer on Au surface for bioelectronic devices by self-assembly technique. J Nanosci Nanotechnol 11:7069–7072.  https://doi.org/10.1166/jnn.2011.4845 CrossRefPubMedGoogle Scholar
  184. Yoon J, Chung Y-H, Yoo S-Y, Min J, Choi J-W (2014) Electrochemical-signal enhanced information storage device composed of cytochrome c/SNP bilayer. J Nanosci Nanotechnol 14:2466–2471.  https://doi.org/10.1166/jnn.2014.8542 CrossRefPubMedGoogle Scholar
  185. Yoon J, Lee T, Bapurao GB, Jo J, Oh B-K, Choi J-W (2017a) Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens Bioelectron 93:14–20.  https://doi.org/10.1016/j.bios.2016.11.064 CrossRefPubMedGoogle Scholar
  186. Yoon J, Shin J-W, Lim J, Mohammadniaei M, Bharate Bapurao G, Lee T, Choi J-W (2017b) Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloids Surf B Biointerfaces 159:729–736.  https://doi.org/10.1016/j.colsurfb.2017.08.033 CrossRefPubMedGoogle Scholar
  187. Yuan Y, Zhou S, Yang G, Yu Z (2013) Electrochemical biomemory devices based on self-assembled graphene-Shewanella oneidensis composite biofilms. RSC Adv 3:18844–18848.  https://doi.org/10.1039/C3RA42850H CrossRefGoogle Scholar
  188. Zhai J, Cui H, Yang R (1997) DNA based biosensors. Biotechnol Adv 15:43–58.  https://doi.org/10.1016/S0734-9750(97)00003-7 CrossRefPubMedGoogle Scholar
  189. Zhang L (2008) Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode. Biosens Bioelectron 23:1610–1615.  https://doi.org/10.1016/j.bios.2008.01.022 CrossRefPubMedGoogle Scholar
  190. Zhang Y, Zhang C-y (2012) Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based Nanosensor. Anal Chem 84:224–231.  https://doi.org/10.1021/ac202405q CrossRefPubMedGoogle Scholar
  191. Zhang J, Dong S, Lu J, Turner APF, Fan Q, Jia S, Yang H, Qiao C, Zhou H, He G (2009) A label free electrochemical Nanobiosensor study. Anal Lett 42:2905–2913.  https://doi.org/10.1080/00032710903201941 CrossRefGoogle Scholar
  192. Zhang YM, Zhang L, Liang RP, Qiu JD (2013) DNA electronic logic gates based on metal-ion-dependent induction of oligonucleotide structural motifs. Chem Eur J 19:6961–6965.  https://doi.org/10.1002/chem.201300625 CrossRefPubMedGoogle Scholar
  193. Zhao Y, Zhou L, Tang Z (2013) Cleavage-based signal amplification of RNA. Nat Commun 4:1493.  https://doi.org/10.1038/ncomms2492 http://www.nature.com/articles/ncomms2492#supplementary-information CrossRefPubMedGoogle Scholar
  194. Zhou J, Arugula MA, Halámek J, Pita M, Katz E (2009) Enzyme-based NAND and NOR logic gates with modular design. J Phys Chem B 113:16065–16070.  https://doi.org/10.1021/jp9079052 CrossRefPubMedGoogle Scholar
  195. Zhu W-L, Zhou Y, Zhang J-R (2009) Direct electrochemistry and electrocatalysis of myoglobin based on silica-coated gold nanorods/room temperature ionic liquid/silica sol–gel composite film. Talanta 80:224–230.  https://doi.org/10.1016/j.talanta.2009.06.056 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulSouth Korea
  2. 2.Department of Chemical EngineeringKwangwoon UniversitySeoulSouth Korea
  3. 3.School of Integrative Engineering Chung-Ang UniversitySeoulSouth Korea

Personalised recommendations