Advertisement

ROS-Responsive Biomaterial Design for Medical Applications

  • Jung Bok Lee
  • Young Min Shin
  • Won Shik Kim
  • Seo Yeon Kim
  • Hak-Joon SungEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)

Abstract

Stimuli-responsive biomaterials undergo significant alterations in material structure and property in response to changes of local environmental factors (e.g. pH, temperature, enzyme activation, and water absorption). In particular, reactive oxygen species (ROS) is considered as a major stimulus because over-production of ROS involves most types of major pathogenesis. The application of ROS-responsive biomaterials requires suitable material designs to program user-defined changes of their structure and property in response to a sudden change in the local ROS level. This chapter summarizes the progress in designing and applying major types of ROS-responsive biomaterials within the past 10 years.

Keywords

Biomaterials Smart function Stimuli-responsive Reactive oxygen species Pathogenesis 

References

  1. Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater (Deerfield Beach, Fla) 26(1):85–124CrossRefGoogle Scholar
  2. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide: role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272(1):217–221CrossRefGoogle Scholar
  3. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7):466–472CrossRefGoogle Scholar
  4. Broaders KE, Grandhe S, Fréchet JMJ (2011) A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc 133(4):756–758CrossRefGoogle Scholar
  5. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85CrossRefGoogle Scholar
  6. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-κB activation and TNF-α gene transcription induced by hypoxia and endotoxin. J Immunol 165(2):1013–1021CrossRefGoogle Scholar
  7. Chaudhri G, Clark IA, Hunt NH, Cowden WB, Ceredig R (1986) Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation. J Immunol 137(8):2646–2652PubMedGoogle Scholar
  8. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040CrossRefGoogle Scholar
  9. Chung M-F, Chia W-T, Wan W-L, Lin Y-J, Sung H-W (2015) Controlled release of an anti-inflammatory drug using an ultrasensitive ROS-responsive gas-generating carrier for localized inflammation inhibition. J Am Chem Soc 137(39):12462–12465CrossRefGoogle Scholar
  10. Corti A, Paolicchi A, Franzini M, Dominici S, Casini AF, Pompella A (2005) The S-thiolating activity of membrane gamma-glutamyltransferase: formation of cysteinyl-glycine mixed disulfides with cellular proteins and in the cell microenvironment. Antioxid Redox Signal 7(7–8):911–918CrossRefGoogle Scholar
  11. Dou Y, Chen Y, Zhang X, Xu X, Chen Y, Guo J, Zhang D, Wang R, Li X, Zhang J (2017) Non-proinflammatory and responsive nanoplatforms for targeted treatment of atherosclerosis. Biomaterials 143(Supplement C):93–108CrossRefGoogle Scholar
  12. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351CrossRefGoogle Scholar
  13. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT (2017) Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 14(1):89–96CrossRefGoogle Scholar
  14. Dwyer DJ, Kohanski MA, Collins JJ (2009) Role of reactive oxygen species in antibiotic action and resistance. Curr Opin Microbiol 12(5):482–489CrossRefGoogle Scholar
  15. Fakhruddin S, Alanazi W, Jackson KE (2017) Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J Diabetes Res 2017:30CrossRefGoogle Scholar
  16. Finkel T (2012) From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci Signal 5(215):pe10–pe10CrossRefGoogle Scholar
  17. Franz S, Rammelt S, Scharnweber D, Simon JC (2011) Immune responses to implants – a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709CrossRefGoogle Scholar
  18. Fridovich I (1997) Superoxide anion radical (O·2), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517CrossRefGoogle Scholar
  19. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931CrossRefGoogle Scholar
  20. Gupta MK, Martin JR, Werfel TA, Shen T, Page JM, Duvall CL (2014) Cell protective, ABC triblock polymer-based thermoresponsive hydrogels with ROS-triggered degradation and drug release. J Am Chem Soc 136(42):14896–14902CrossRefGoogle Scholar
  21. Hertog Jd, Östman A, Böhmer F-D (2008) Protein tyrosine phosphatases: regulatory mechanisms. FEBS J 275(5):831–847CrossRefGoogle Scholar
  22. Ikeda M, Tanida T, Yoshii T, Kurotani K, Onogi S, Urayama K, Hamachi I (2014) Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nat Chem 6:511CrossRefGoogle Scholar
  23. Jang K-J, Mano H, Aoki K, Hayashi T, Muto A, Nambu Y, Takahashi K, Itoh K, Taketani S, Nutt SL, Igarashi K, Shimizu A, Sugai M (2015) Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat Commun 6:6750CrossRefGoogle Scholar
  24. Kamiński MM, Sauer SW, Klemke C-D, Süss D, Okun JG, Krammer PH, Gülow K (2010) Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. J Immunol 184(9):4827–4841CrossRefGoogle Scholar
  25. Kim GH, Kim JE, Rhie SJ, Yoon S (2015a) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340CrossRefGoogle Scholar
  26. Kim JS, Jo SD, Seah GL, Kim I, Nam YS (2015b) ROS-induced biodegradable polythioketal nanoparticles for intracellular delivery of anti-cancer therapeutics. J Ind Eng Chem 21(Supplement C):1137–1142CrossRefGoogle Scholar
  27. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192CrossRefGoogle Scholar
  28. Lee J-C, Litt MH, Rogers CE (1998) Synthesis and properties of poly(oxyethylene)s containing thioether, sulfoxide, or sulfone groups. J Polym Sci A Polym Chem 36(5):793–801CrossRefGoogle Scholar
  29. Liu J, Pang Y, Chen J, Huang P, Huang W, Zhu X, Yan D (2012) Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent. Biomaterials 33(31):7765–7774CrossRefGoogle Scholar
  30. Ma N, Li Y, Xu H, Wang Z, Zhang X (2010) Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 132(2):442–443CrossRefGoogle Scholar
  31. Ma N, Xu H, An L, Li J, Sun Z, Zhang X (2011) Radiation-sensitive diselenide block co-polymer micellar aggregates: toward the combination of radiotherapy and chemotherapy. Langmuir 27(10):5874–5878CrossRefGoogle Scholar
  32. Martin JR, Gupta MK, Page JM, Yu F, Davidson JM, Guelcher SA, Duvall CL (2014) A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials 35(12):3766–3776CrossRefGoogle Scholar
  33. Mertz W (1981) The essential trace elements. Science 213(4514):1332–1338CrossRefGoogle Scholar
  34. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2013) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167CrossRefGoogle Scholar
  35. Napoli A, Valentini M, Tirelli N, Muller M, Hubbell JA (2004a) Oxidation-responsive polymeric vesicles. Nat Mater 3(3):183–189CrossRefGoogle Scholar
  36. Napoli A, Boerakker MJ, Tirelli N, Nolte RJM, Sommerdijk NAJM, Hubbell JA (2004b) Glucose-oxidase based self-destructing polymeric vesicles. Langmuir 20(9):3487–3491CrossRefGoogle Scholar
  37. Nicolaou KC, Mathison CJ, Montagnon T (2003) New reactions of IBX: oxidation of nitrogen- and sulfur-containing substrates to afford useful synthetic intermediates. Angew Chem Int Ed Engl 42(34):4077–4082CrossRefGoogle Scholar
  38. Nikolay VG, Pavel VA, Alexander DN, Irina LZ, Richard OJ (2015) Reactive oxygen species in pathogenesis of atherosclerosis. Curr Pharm Des 21(9):1134–1146CrossRefGoogle Scholar
  39. Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS (2011) Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8:57CrossRefGoogle Scholar
  40. Peltier R, Chen G, Lei H, Zhang M, Gao L, Lee SS, Wang Z, Sun H (2015) The rational design of a peptide-based hydrogel responsive to H2S. Chem Commun 51(97):17273–17276CrossRefGoogle Scholar
  41. Poole KM, Nelson CE, Joshi RV, Martin JR, Gupta MK, Haws SC, Kavanaugh TE, Skala MC, Duvall CL (2015) ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials 41(Supplement C):166–175CrossRefGoogle Scholar
  42. Qin L, Li G, Qian X, Liu Y, Wu X, Liu B, Hong J-S, Block ML (2005) Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52(1):78–84CrossRefGoogle Scholar
  43. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA (2006) In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 112(1):26–34CrossRefGoogle Scholar
  44. Rehor A, Botterhuis NE, Hubbell JA, Sommerdijk NAJM, Tirelli N (2005) Glucose sensitivity through oxidation responsiveness. An example of cascade-responsive nano-sensors. J Mater Chem 15(37):4006–4009CrossRefGoogle Scholar
  45. Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312(5782):1882–1883CrossRefGoogle Scholar
  46. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590CrossRefGoogle Scholar
  47. Saravanakumar G, Kim J, Kim WJ (2017) Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci (Weinh) 4(1):1600124CrossRefGoogle Scholar
  48. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462CrossRefGoogle Scholar
  49. Schroeder HA, Frost DV, Balassa JJ (1970) Essential trace metals in man: selenium. J Chronic Dis 23(4):227–243CrossRefGoogle Scholar
  50. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128CrossRefGoogle Scholar
  51. Serras F (2016) The benefits of oxidative stress for tissue repair and regeneration. Fly 10(3):128–133CrossRefGoogle Scholar
  52. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:26Google Scholar
  53. Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y (1994) Preparation and characterization of a glucose-responsive insulin-releasing polymer device. Biomaterials 15(2):121–128CrossRefGoogle Scholar
  54. Shim MS, Xia Y (2013) A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int Ed 52(27):6926–6929CrossRefGoogle Scholar
  55. Simm A, Brömme H-J (2005) Reactive oxygen species (ROS) and aging: do we need them — can we measure them — should we block them? Signal Transduct 5(3):115–125CrossRefGoogle Scholar
  56. Song C-C, Du F-S, Li Z-C (2014) Oxidation-responsive polymers for biomedical applications. J Mater Chem B 2(22):3413–3426CrossRefGoogle Scholar
  57. Svegliati S, Cancello R, Sambo P, Luchetti M, Paroncini P, Orlandini G, Discepoli G, Paterno R, Santillo M, Cuozzo C, Cassano S, Avvedimento EV, Gabrielli A (2005) Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2: amplification of ROS and Ras in systemic sclerosis fibroblasts. J Biol Chem 280(43):36474–36482CrossRefGoogle Scholar
  58. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579CrossRefGoogle Scholar
  59. Velluto D, Demurtas D, Hubbell JA (2008) PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example. Mol Pharm 5(4):632–642CrossRefGoogle Scholar
  60. Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu Q (2014) Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew Chem Int Ed 53(49):13444–13448CrossRefGoogle Scholar
  61. Webb KS, Levy D (1995) A facile oxidation of boronic acids and boronic esters. Tetrahedron Lett 36(29):5117–5118CrossRefGoogle Scholar
  62. Wheeler ML, DeFranco AL (2012) Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. J Immunol 189(9):4405–4416CrossRefGoogle Scholar
  63. Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N (2010) Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9:923CrossRefGoogle Scholar
  64. Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82–83(Supplement C):969–974CrossRefGoogle Scholar
  65. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278CrossRefGoogle Scholar
  66. Xu H, Cao W, Zhang X (2013) Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Acc Chem Res 46(7):1647–1658CrossRefGoogle Scholar
  67. Xu Q, He C, Xiao C, Chen X (2016) Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol Biosci 16(5):635–646CrossRefGoogle Scholar
  68. Xu X, Saw PE, Tao W, Li Y, Ji X, Bhasin S, Liu Y, Ayyash D, Rasmussen J, Huo M, Shi J, Farokhzad OC (2017) ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv Mater 29(33).  https://doi.org/10.1002/adma.201700141 CrossRefGoogle Scholar
  69. Yang Y, Bazhin AV, Werner J, Karakhanova S (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32(3):249–270CrossRefGoogle Scholar
  70. Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37(8):1473–1481CrossRefGoogle Scholar
  71. Yu SS, Koblin RL, Zachman AL, Perrien DS, Hofmeister LH, Giorgio TD, Sung H-J (2011) Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds. Biomacromolecules 12(12):4357–4366CrossRefGoogle Scholar
  72. Zhou Y, Li B, Li S, Ardoña HAM, Wilson WL, Tovar JD, Schroeder CM (2017) Concentration-driven assembly and sol–gel transition of π-conjugated oligopeptides. ACS Cent Sci 3(9):986–994CrossRefGoogle Scholar
  73. Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)––induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res/Fundam Mol Mech Mutagen 711(1):167–173CrossRefGoogle Scholar
  74. Ziegler DM (1985) Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem 54(1):305–329CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jung Bok Lee
    • 1
  • Young Min Shin
    • 1
  • Won Shik Kim
    • 2
  • Seo Yeon Kim
    • 1
  • Hak-Joon Sung
    • 1
  1. 1.Department of Biomedical ScienceYonsei University College of MedicineSeoulSouth Korea
  2. 2.Department of OtorhinolaryngologyYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations