Decellularized Tissue Matrix for Stem Cell and Tissue Engineering

  • Jung Seung Lee
  • Yi Sun Choi
  • Seung-Woo ChoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)


Decellularization is a technique to remove cellular components from native tissues, which could reduce immune reactions to the scaffolds. Decellularized matrices are valuable for tissue engineering, as they preserve tissue-specific structural, mechanical, and biochemical microenvironments, while promoting cellular engraftment and functions in the matrix. So far, various tissues have been decellularized by combinations of mechanical, chemical, and enzymatic processes and utilized in preparing bioscaffolds to provide tissue-specific environments for various cell types, including primary cells, progenitor cells, and stem cells. In addition, decellularized matrices could be manipulated into several formats according to the final application, such as tissue-engineering scaffolds, artificial organs, cell culture matrices, and transplantation carriers. In this chapter, we describe various types of decellularized tissue matrices and their extensive use in regenerative medicine, including reconstruction of artificial organs and regeneration of damaged tissues.


Decellularization Tissue engineering Stem cell Regenerative medicine Organ transplantation Artificial organ 


  1. Alberti KA, Sun J-Y, Illeperuma WR, Suo Z, Xu Q (2015) Laminar tendon composites with enhanced mechanical properties. J Mater Sci 50(6):2616–2625PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altman AM, Matthias N, Yan Y, Song Y-H, Bai X, Chiu ES, Slakey DP, Alt EU (2008) Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells. Biomaterials 29(10):1431–1442PubMedCrossRefPubMedCentralGoogle Scholar
  3. Angelidis IK, Thorfinn J, Connolly ID, Lindsey D, Pham HM, Chang J (2010) Tissue engineering of flexor tendons: the effect of a tissue bioreactor on adipoderived stem cell–seeded and fibroblast-seeded tendon constructs. J Hand Surg 35(9):1466–1472CrossRefGoogle Scholar
  4. Badylak SF (1993) Small intestinal submucosa (SIS): a biomaterial conducive to smart tissue remodeling. Tissue Eng: Springer, 179–189CrossRefGoogle Scholar
  5. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3):367–377PubMedCrossRefPubMedCentralGoogle Scholar
  6. Badylak SF, Lantz GC, Coffey A, Geddes LA (1989) Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 47(1):74–80PubMedCrossRefPubMedCentralGoogle Scholar
  7. Badylak S, Arnoczky S, Plouhar P, Haut R, Mendenhall V, Clarke R, Horvath C (1999) Naturally occurring extracellular matrix as a scaffold for musculoskeletal repair. Clin Orthop Relat Res 367:S333–S343CrossRefGoogle Scholar
  8. Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202PubMedCrossRefPubMedCentralGoogle Scholar
  9. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53PubMedCrossRefPubMedCentralGoogle Scholar
  10. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53(2):604–617PubMedCrossRefPubMedCentralGoogle Scholar
  11. Batchelder CA, Martinez ML, Tarantal AF (2015) Natural scaffolds for renal differentiation of human embryonic stem cells for kidney tissue engineering. PLoS One 10(12):e0143849PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bertanha M, Moroz A, Jaldin RG, Silva RA, Rinaldi JC, Golim MA, Felisbino SL, Domingues MA, Sobreira ML, Reis PP (2014a) Morphofunctional characterization of decellularized vena cava as tissue engineering scaffolds. Exp Cell Res 326(1):103–111PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bertanha M, Moroz A, Almeida R, Alves FC, Valério MJA, Moura R, Domingues MAC, Sobreira ML, Deffune E (2014b) Tissue-engineered blood vessel substitute by reconstruction of endothelium using mesenchymal stem cells induced by platelet growth factors. J Vasc Surg 59(6):1677–1685PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bonandrini B, Figliuzzi M, Papadimou E, Morigi M, Perico N, Casiraghi F, Sangalli F, Conti S, Benigni A, Remuzzi A (2014) Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng A 20(9-10):1486–1498CrossRefGoogle Scholar
  15. Bonvillain RW, Danchuk S, Sullivan DE, Betancourt AM, Semon JA, Eagle ME, Mayeux JP, Gregory AN, Wang G, Townley IK (2012) A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng A 18(23-24):2437–2452CrossRefGoogle Scholar
  16. Bozuk MI, Fearing NM, Leggett PL (2006) Use of decellularized human skin to repair esophageal anastomotic leak in humans. JSLS 10(1):83PubMedPubMedCentralGoogle Scholar
  17. Brown A, Farhat W, Merguerian P, Wilson G, Khoury A, Woodhouse K (2002) 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials 23(10):2179–2190PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brown-Etris M, Cutshall WD, Hiles MC (2002) A new biomaterial derived from small intestine submucosa and developed into a wound matrix device. Wounds 14(4):150–166Google Scholar
  19. Bucholz RW, Carlton A, Holmes RE (1987) Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin N Am 18(2):323–334Google Scholar
  20. Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62Google Scholar
  21. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475PubMedPubMedCentralCrossRefGoogle Scholar
  22. Burk J, Erbe I, Berner D, Kacza J, Kasper C, Pfeiffer B, Winter K, Brehm W (2013) Freeze-thaw cycles enhance decellularization of large tendons. Tissue Eng Part C Methods 20(4):276–284PubMedPubMedCentralCrossRefGoogle Scholar
  23. Caione P, Capozza N, Zavaglia D, Palombaro G, Boldrini R (2006) In vivo bladder regeneration using small intestinal submucosa: experimental study. Pediatr Surg Int 22(7):593–599PubMedCrossRefPubMedCentralGoogle Scholar
  24. Caralt M, Uzarski JS, Iacob S, Obergfell KP, Berg N, Bijonowski BM, Kiefer KM, Ward HH, Wandinger-Ness A, Miller WM (2015) Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am J Transplant 15(1):64–75PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chavez-Munoz C, Nguyen KT, Xu W, Hong S-J, Mustoe TA, Galiano RD (2013) Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis. PLoS One 8(12):e80587PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen R-N, Ho H-O, Tsai Y-T, Sheu M-T (2004) Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25(13):2679–2686CrossRefGoogle Scholar
  27. Chen J, Xu J, Wang A, Zheng M (2009) Scaffolds for tendon and ligament repair: review of the efficacy of commercial products. Expert Rev Med Devices 6(1):61–73PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chen B-S, Xie H, Zhang S-L, Geng H-Q, Zhou J-M, Pan J, Chen F (2011) Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells. Int J Artif Organs 34(12):1137–1146PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chen M-C, Sun Y-C, Chen Y-H (2013) Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater 9(3):5562–5572PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cheng EY, Kropp BP (2000) Urologic tissue engineering with small-intestinal submucosa: potential clinical applications. World J Urol 18(1):26–30PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chlupac J, Filova E, Bacakova L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58:S119PubMedPubMedCentralGoogle Scholar
  32. Cho S-W, Park HJ, Ryu JH, Kim SH, Kim YH, Choi CY, Lee M-J, Kim J-S, Jang I-S, Kim D-I (2005a) Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials 26(14):1915–1924PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cho S-W, Lim SH, Kim I-K, Hong YS, Kim S-S, Yoo KJ, Park H-Y, Jang Y, Chang BC, Choi CY (2005b) Small-diameter blood vessels engineered with bone marrow–derived cells. Ann Surg 241(3):506PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cho SW, Lim JE, Chu HS, Hyun HJ, Choi CY, Hwang KC, Yoo KJ, Kim DI, Kim BS (2006) Enhancement of in vivo endothelialization of tissue-engineered vascular grafts by granulocyte colony-stimulating factor. J Biomed Mater Res A 76((2):252–263CrossRefGoogle Scholar
  35. Chung SY, Krivorov NP, Rausei V, Thomas L, Frantzen M, Landsittel D, Kang YM, Chon CH, Ng CS, Fuchs GJ (2005) Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol 174(1):353–359PubMedCrossRefPubMedCentralGoogle Scholar
  36. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Supplement 3):S131–S139PubMedPubMedCentralCrossRefGoogle Scholar
  37. Clayton RA, Court-Brown CM (2008) The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury 39(12):1338–1344PubMedCrossRefPubMedCentralGoogle Scholar
  38. Cobb MA, Badylak SF, Janas W, Simmons-Byrd A, Boop FA (1999) Porcine small intestinal submucosa as a dural substitute. Surg Neurol 51(1):99–104PubMedCrossRefPubMedCentralGoogle Scholar
  39. Consolo F, Brizzola S, Tremolada G, Grieco V, Riva F, Acocella F, Fiore G, Soncini M (2016) A dynamic distention protocol for whole-organ bladder decellularization: histological and biomechanical characterization of the acellular matrix. J Tissue Eng Regen Med 10(2):E101–E112PubMedCrossRefPubMedCentralGoogle Scholar
  40. Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG (2005) Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26(9):971–977PubMedCrossRefPubMedCentralGoogle Scholar
  41. Davis NF, Mooney R, Callanan A, Flood HD, McGloughlin TM (2011) Augmentation cystoplasty and extracellular matrix scaffolds: an ex vivo comparative study with autogenous detubularised ileum. PLoS One 6(5):e20323PubMedPubMedCentralCrossRefGoogle Scholar
  42. De Coppi P, Callegari A, Chiavegato A, Gasparotto L, Piccoli M, Taiani J, Pozzobon M, Boldrin L, Okabe M, Cozzi E (2007) Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 177(1):369–376PubMedCrossRefPubMedCentralGoogle Scholar
  43. Deeken C, White A, Bachman S, Ramshaw B, Cleveland D, Loy T, Grant S (2011) Method of preparing a decellularized porcine tendon using tributyl phosphate. J Biomed Mater Res B Appl Biomater 96((2):199–206CrossRefGoogle Scholar
  44. DeQuach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, Christman KL (2010) Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 5(9):e13039PubMedPubMedCentralCrossRefGoogle Scholar
  45. DeQuach JA, Lin JE, Cam C, Hu D, Salvatore MA, Sheikh F, Christman KL (2012) Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model. Eur Cells Mater 23:400CrossRefGoogle Scholar
  46. Dora KA (2001) Cell-cell communication in the vessel wall. Vasc Med 6(1):43–50PubMedCrossRefPubMedCentralGoogle Scholar
  47. Du C, Narayanan K, Leong MF, Ibrahim MS, Chua YP, Khoo VMH, Wan AC (2016) Functional kidney bioengineering with pluripotent stem-cell-derived renal progenitor cells and decellularized kidney scaffolds. Adv Healthcare Mater 5(16):2080–2091CrossRefGoogle Scholar
  48. Eaglstein WH, Falanga V (1997) Tissue engineering and the development of Apligraf®, a human skin equivalent. Clin Ther 19(5):894–905PubMedCrossRefPubMedCentralGoogle Scholar
  49. Eitan Y, Sarig U, Dahan N, Machluf M (2009) Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods 16(4):671–683CrossRefGoogle Scholar
  50. Faulk DM, Wildemann JD, Badylak SF (2015) Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J Clin Exp Hepatol 5(1):69–80PubMedCrossRefPubMedCentralGoogle Scholar
  51. Franklin M, Gonzalez J, Michaelson R, Glass J, Chock D (2002) Preliminary experience with new bioactive prosthetic material for repair of hernias in infected fields. Hernia 6(4):171–174PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fröhlich M, Grayson WL, Marolt D, Gimble JM, Kregar-Velikonja N, Vunjak-Novakovic G (2009) Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture. Tissue Eng A 16(1):179–189CrossRefGoogle Scholar
  53. Gans C (1982) Fiber architecture and muscle function. Exerc Sport Sci Rev 10(1):160–207PubMedPubMedCentralGoogle Scholar
  54. Gerhardt LC, Widdows KL, Erol MM, Nandakumar A, Roqan IS, Ansari T, Boccaccini AR (2013) Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J Biomed Mater Res A 101((3):827–841CrossRefGoogle Scholar
  55. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683PubMedPubMedCentralGoogle Scholar
  56. Gillies AR, Smith LR, Lieber RL, Varghese S (2010) Method for decellularizing skeletal muscle without detergents or proteolytic enzymes. Tissue Eng Part C Methods 17(4):383–389PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gilpin SE, Ren X, Okamoto T, Guyette JP, Mou H, Rajagopal J, Mathisen DJ, Vacanti JP, Ott HC (2014) Enhanced lung epithelial specification of human induced pluripotent stem cells on decellularized lung matrix. Ann Thorac Surg 98(5):1721–1729PubMedPubMedCentralCrossRefGoogle Scholar
  58. Go T, Jungebluth P, Baiguero S, Asnaghi A, Martorell J, Ostertag H, Mantero S, Birchall M, Bader A, Macchiarini P (2010) Both epithelial cells and mesenchymal stem cell–derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs. J Thorac Cardiovasc Surg 139(2):437–443PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, Fontana G, Sibila O, Rombolà G, Jungebluth P (2014) The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet 383(9913):238–244PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gray FL, Turner CG, Ahmed A, Calvert CE, Zurakowski D, Fauza DO (2012) Prenatal tracheal reconstruction with a hybrid amniotic mesenchymal stem cells–engineered construct derived from decellularized airway. J Pediatr Surg 47(6):1072–1079PubMedCrossRefPubMedCentralGoogle Scholar
  61. Grayson WL, Bhumiratana S, Cannizzaro C, Chao P-HG, Lennon DP, Caplan AI, Vunjak-Novakovic G (2008) Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng A 14(11):1809–1820CrossRefGoogle Scholar
  62. Grillo HC (2002) Tracheal replacement: a critical review. Ann Thorac Surg 73(6):1995–2004PubMedCrossRefPubMedCentralGoogle Scholar
  63. Gui L, Muto A, Chan SA, Breuer CK, Niklason LE (2009) Development of decellularized human umbilical arteries as small-diameter vascular grafts. Tissue Eng A 15(9):2665–2676CrossRefGoogle Scholar
  64. Guyette JP, Gilpin SE, Charest JM, Tapias LF, Ren X, Ott HC (2014) Perfusion decellularization of whole organs. Nat Protoc 9(6):1451PubMedCrossRefPubMedCentralGoogle Scholar
  65. Haag J, Baiguera S, Jungebluth P, Barale D, Del Gaudio C, Castiglione F, Bianco A, Comin CE, Ribatti D, Macchiarini P (2012) Biomechanical and angiogenic properties of tissue-engineered rat trachea using genipin cross-linked decellularized tissue. Biomaterials 33(3):780–789PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hashimoto Y, Funamoto S, Kimura T, Nam K, Fujisato T, Kishida A (2011) The effect of decellularized bone/bone marrow produced by high-hydrostatic pressurization on the osteogenic differentiation of mesenchymal stem cells. Biomaterials 32(29):7060–7067PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hill M, Wernig A, Goldspink G (2003) Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 203(1):89–99PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hodde J (2002) Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng 8(2):295–308PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hoganson DM, O’Doherty EM, Owens GE, Harilal DO, Goldman SM, Bowley CM, Neville CM, Kronengold RT, Vacanti JP (2010) The retention of extracellular matrix proteins and angiogenic and mitogenic cytokines in a decellularized porcine dermis. Biomaterials 31(26):6730–6737PubMedCrossRefPubMedCentralGoogle Scholar
  70. Huang S-P, Hsu C-C, Chang S-C, Wang C-H, Deng S-C, Dai N-T, Chen T-M, Chan JY-H, Chen S-G, Huang S-M (2012) Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg 69(6):656–662PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hubbell JA (1995) Biomaterials in tissue engineering. Nat Biotechnol 13(6):565–576CrossRefGoogle Scholar
  72. Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM, Gutierrez JM (2002) Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis 39(5):1078–1087PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hurd SA, Bhatti NM, Walker AM, Kasukonis BM, Wolchok JC (2015) Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells. Biomaterials 49:9–17PubMedPubMedCentralCrossRefGoogle Scholar
  74. Huynh T, Abraham G, Murray J, Brockbank K, Hagen P-O, Sullivan S (1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17(11):1083–1086PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ingram JH, Korossis S, Howling G, Fisher J, Ingham E (2007) The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng 13(7):1561–1572PubMedCrossRefPubMedCentralGoogle Scholar
  76. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278Google Scholar
  77. Jones JS, Rackley RR, Berglund R, Abdelmalak JB, Deorco G, Vasavada SP (2005) Porcine small intestinal submucosa as a percutaneous mid-urethral sling: 2-year results. BJU Int 96(1):103–106PubMedCrossRefPubMedCentralGoogle Scholar
  78. Jungebluth P, Macchiarini P (2014) Airway transplantation. Thorac Surg Clin 24(1):97–106PubMedCrossRefPubMedCentralGoogle Scholar
  79. Jungebluth P, Alici E, Baiguera S, Blomberg P, Bozóky B, Crowley C, Einarsson O, Gudbjartsson T, Le Guyader S, Henriksson G (2011) Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 378(9808):1997–2004PubMedCrossRefPubMedCentralGoogle Scholar
  80. Jungebluth P, Haag JC, Sjöqvist S, Gustafsson Y, Rodríguez AB, Del Gaudio C, Bianco A, Dehnisch I, Uhlén P, Baiguera S (2014) Tracheal tissue engineering in rats. Nat Protoc 9(9):2164–2179PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10(4):1–4Google Scholar
  82. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E, Moran AM, Schoen FJ, Atala A (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7(9):1035–1040PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kimuli M, Eardley I, Southgate J (2004) In vitro assessment of decellularized porcine dermis as a matrix for urinary tract reconstruction. BJU Int 94(6):859–866PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kitahara H, Yagi H, Tajima K, Okamoto K, Yoshitake A, Aeba R, Kudo M, Kashima I, Kawaguchi S, Hirano A (2016) Heterotopic transplantation of a decellularized and recellularized whole porcine heart. Interact Cardiovasc Thorac Surg 22(5):571–579PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ko IK, Peng L, Peloso A, Smith CJ, Dhal A, Deegan DB, Zimmerman C, Clouse C, Zhao W, Shupe TD (2015) Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials 40:72–79PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ko E, Alberti K, Lee JS, Yang K, Jin Y, Shin J, Yang HS, Xu Q, Cho S-W (2016) Nanostructured tendon-derived scaffolds for enhanced bone regeneration by human adipose-derived stem cells. ACS Appl Mater Interfaces 8(35):22819–22829PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kropp BP, Cheng EY, Lin H-k, Zhang Y (2004) Reliable and reproducible bladder regeneration using unseeded distal small intestinal submucosa. J Urol 172((4):1710–1713CrossRefGoogle Scholar
  88. Kudish HG (1957) The use of polyvinyl sponge for experimental cystoplasty. J Urol 78(3):232–235PubMedCrossRefPubMedCentralGoogle Scholar
  89. L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G (2006) Human Tissue Engineered Blood Vessel For Adult Arterial Revascularization. Nat Med 12(3):361PubMedPubMedCentralCrossRefGoogle Scholar
  90. L’Heureux N, McAllister TN, de la Fuente LM (2007) Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med 357(14):1451–1453PubMedCrossRefPubMedCentralGoogle Scholar
  91. Layman H, Spiga M-G, Brooks T, Pham S, Webster KA, Andreopoulos FM (2007) The effect of the controlled release of basic fibroblast growth factor from ionic gelatin-based hydrogels on angiogenesis in a murine critical limb ischemic model. Biomaterials 28(16):2646–2654PubMedPubMedCentralCrossRefGoogle Scholar
  92. Layman H, Rahnemai-Azar AA, Pham SM, Tsechpenakis G, Andreopoulos FM (2010) Synergistic angiogenic effect of codelivering fibroblast growth factor 2 and granulocyte-colony stimulating factor from fibrin scaffolds and bone marrow transplantation in critical limb ischemia. Tissue Eng A 17(1-2):243–254CrossRefGoogle Scholar
  93. Lee JS, Cho S-W (2012) Liver tissue engineering: Recent advances in the development of a bio-artificial liver. Biotechnol Bioprocess Eng 17(3):427–438CrossRefGoogle Scholar
  94. Lee KI, Lee JS, Kim JG, Kang KT, Jang JW, Shim YB, Moon SH (2013a) Mechanical properties of decellularized tendon cultured by cyclic straining bioreactor. J Biomed Mater Res A 101(11):3152–3158PubMedPubMedCentralGoogle Scholar
  95. Lee JS, Shin J, Park H-M, Kim Y-G, Kim B-G, Oh J-W, Cho S-W (2013b) Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 15(1):206–218PubMedCrossRefPubMedCentralGoogle Scholar
  96. Lee JS, Lee K, Moon SH, Chung HM, Lee JH, Um SH, Kim DI, Cho SW (2014) Mussel-inspired cell-adhesion peptide modification for enhanced endothelialization of decellularized blood vessels. Macromol Biosci 14(8):1181–1189PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lee DJ, Diachina S, Lee YT, Zhao L, Zou R, Tang N, Han H, Chen X, Ko C-C (2016) Decellularized bone matrix grafts for calvaria regeneration. J Tissue Eng 7:2041731416680306CrossRefGoogle Scholar
  98. Liu G, Li Y, Sun J, Zhou H, Zhang W, Cui L, Cao Y (2010) In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix. Tissue Eng A 16(3):971–982CrossRefGoogle Scholar
  99. Livesey SA, Herndon DN, Hollyoak MA, Atkinson YH, Nag A (1995) Transplanted acellular allograft dermal matrix: potential as a template for the reconstruction of viable dermis. Transplantation 60(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  100. Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean J, Kwok LW, Mou H, Rajagopal J, Shen SS (2012) Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10(4):398–411PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lu T-Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, Yang L (2013) Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun 4:2307PubMedCrossRefPubMedCentralGoogle Scholar
  102. Luo J-C, Chen W, Chen X-H, Qin T-W, Huang Y-C, Xie H-Q, Li X-Q, Qian Z-Y, Yang Z-M (2011) A multi-step method for preparation of porcine small intestinal submucosa (SIS). Biomaterials 32(3):706–713PubMedCrossRefPubMedCentralGoogle Scholar
  103. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030PubMedCrossRefPubMedCentralGoogle Scholar
  104. MacLeod T, Sarathchandra P, Williams G, Sanders R, Green C (2004) Evaluation of a porcine origin acellular dermal matrix and small intestinal submucosa as dermal replacements in preventing secondary skin graft contraction. Burns 30(5):431–437PubMedCrossRefPubMedCentralGoogle Scholar
  105. Maher B (2013) How to build a heart. Nature 499(7456):20PubMedCrossRefPubMedCentralGoogle Scholar
  106. Martinello T, Bronzini I, Volpin A, Vindigni V, Maccatrozzo L, Caporale G, Bassetto F, Patruno M (2014) Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J Tissue Eng Regen Med 8(8):612–619PubMedCrossRefPubMedCentralGoogle Scholar
  107. Mazza G, Rombouts K, Hall AR, Urbani L, Luong TV, Al-Akkad W, Longato L, Brown D, Maghsoudlou P, Dhillon AP (2015) Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 5:13079PubMedPubMedCentralCrossRefGoogle Scholar
  108. McKee RA, Wingert RA (2016) Repopulating decellularized kidney scaffolds: an avenue for ex vivo organ generation. Materials 9(3):190PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mendez JJ, Ghaedi M, Steinbacher D, Niklason LE (2014) Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng A 20(11-12):1735–1746CrossRefGoogle Scholar
  110. Merritt EK, Hammers DW, Tierney M, Suggs LJ, Walters TJ, Farrar RP (2010a) Functional assessment of skeletal muscle regeneration utilizing homologous extracellular matrix as scaffolding. Tissue Eng A 16(4):1395–1405CrossRefGoogle Scholar
  111. Merritt EK, Cannon MV, Hammers DW, Le LN, Gokhale R, Sarathy A, Song TJ, Tierney MT, Suggs LJ, Walters TJ (2010b) Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng A 16(9):2871–2881CrossRefGoogle Scholar
  112. Misseri R, Cain MP, Casale AJ, Kaefer M, Meldrum KK, Rink RC (2005) Small intestinal submucosa bladder neck slings for incontinence associated with neuropathic bladder. J Urol 174(4):1680–1682PubMedCrossRefPubMedCentralGoogle Scholar
  113. Monsour M, Mohammed R, Gorham S, French D, Scott R (1987) An assessment of a collagen/vicryl composite membrane to repair defects of the urinary bladder in rabbits. Urol Res 15(4):235–238PubMedCrossRefPubMedCentralGoogle Scholar
  114. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng A 16(7):2207–2216CrossRefGoogle Scholar
  115. Neff LP, Tillman BW, Yazdani SK, Machingal MA, Yoo JJ, Soker S, Bernish BW, Geary RL, Christ GJ (2011) Vascular Smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J Vasc Surg 53(2):426–434PubMedCrossRefPubMedCentralGoogle Scholar
  116. Nie C, Yang D, Morris SF (2009) Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing. Med Hypotheses 72(6):679–682PubMedCrossRefPubMedCentralGoogle Scholar
  117. Ning L-J, Zhang Y-J, Zhang Y, Qing Q, Jiang Y-L, Yang J-L, Luo J-C, Qin T-W (2015) The utilization of decellularized tendon slices to provide an inductive microenvironment for the proliferation and tenogenic differentiation of stem cells. Biomaterials 52:539–550PubMedCrossRefPubMedCentralGoogle Scholar
  118. O’brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRefGoogle Scholar
  119. O’Neill JD, Anfang R, Anandappa A, Costa J, Javidfar J, Wobma HM, Singh G, Freytes DO, Bacchetta MD, Sonett JR (2013) Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 96(3):1046–1056PubMedPubMedCentralCrossRefGoogle Scholar
  120. Obara T, Matsuura S, Narita S, Satoh S, Tsuchiya N, Habuchi T (2006) Bladder acellular matrix grafting regenerates urinary bladder in the spinal cord injury rat. Urology 68(4):892–897PubMedCrossRefPubMedCentralGoogle Scholar
  121. Oberwallner B, Brodarac A, Choi YH, Saric T, Anić P, Morawietz L, Stamm C (2014) Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res A 102(9):3263–3272PubMedCrossRefPubMedCentralGoogle Scholar
  122. Oelschlager BK, Barreca M, Chang L, Pellegrini CA (2003) The use of small intestine submucosa in the repair of paraesophageal hernias: initial observations of a new technique. Am J Surg 186(1):4–8PubMedCrossRefPubMedCentralGoogle Scholar
  123. Oliveira AC, Garzón I, Ionescu AM, Carriel V, de la Cruz Cardona J, González-Andrades M, del Mar Pérez M, Alaminos M, Campos A (2013) Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS One 8(6):e66538PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ono I, Tateshita T, Inoue M (1999) Effects of a collagen matrix containing basic fibroblast growth factor on wound contraction. J Biomed Mater Res A 48(5):621–630CrossRefGoogle Scholar
  125. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221PubMedCrossRefPubMedCentralGoogle Scholar
  126. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933PubMedCrossRefPubMedCentralGoogle Scholar
  127. Ouyang HW, Goh JC, Thambyah A, Teoh SH, Lee EH (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng 9(3):431–439PubMedCrossRefPubMedCentralGoogle Scholar
  128. Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M (2016) Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One 11(2):e0148225PubMedPubMedCentralCrossRefGoogle Scholar
  129. Paduano F, Marrelli M, Alom N, Amer M, White LJ, Shakesheff KM, Tatullo M (2017) Decellularized bone extracellular matrix and human dental pulp stem cells as a construct for bone regeneration. J Biomater Sci Polym Ed 28(8):730–748PubMedCrossRefPubMedCentralGoogle Scholar
  130. Partington L, Mordan N, Mason C, Knowles J, Kim H, Lowdell M, Birchall M, Wall I (2013) Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomater 9(2):5251–5261PubMedCrossRefPubMedCentralGoogle Scholar
  131. Patil PB, Chougule PB, Kumar VK, Almström S, Bäckdahl H, Banerjee D, Herlenius G, Olausson M, Sumitran-Holgersson S (2013) Recellularization of acellular human small intestine using bone marrow stem cells. Stem Cells Transl Med 2(4):307–315PubMedPubMedCentralCrossRefGoogle Scholar
  132. Perniconi B, Costa A, Aulino P, Teodori L, Adamo S, Coletti D (2011) The pro-myogenic environment provided by whole organ scale acellular scaffolds from skeletal muscle. Biomaterials 32(31):7870–7882PubMedCrossRefPubMedCentralGoogle Scholar
  133. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541PubMedPubMedCentralCrossRefGoogle Scholar
  134. Petersen TH, Calle EA, Colehour MB, Niklason LE (2012) Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195(3):222–231PubMedCrossRefPubMedCentralGoogle Scholar
  135. Pietrzak WS, Ali SN, Chitturi D, Jacob M, Woodell-May JE (2011) BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation. Cell Tissue Bank 12(2):81–88PubMedCrossRefPubMedCentralGoogle Scholar
  136. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8(6):457PubMedCrossRefPubMedCentralGoogle Scholar
  137. Porzionato A, Sfriso MM, Pontini A, Macchi V, Petrelli L, Pavan PG, Natali AN, Bassetto F, Vindigni V, De Caro R (2015) Decellularized human skeletal muscle as biologic scaffold for reconstructive surgery. Int J Mol Sci 16(7):14808–14831PubMedPubMedCentralCrossRefGoogle Scholar
  138. Prevel CD, Eppley BL, Summerlin D-J, Sidner R, Jackson JR, McCarty M, Badylak SF (1995) Small intestinal submucosa: utilization as a wound dressing in full-thickness rodent wounds. Ann Plast Surg 35(4):381–388PubMedCrossRefPubMedCentralGoogle Scholar
  139. Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE (2011) Decellularized tissue-engineered blood vessel as an arterial conduit. Proc Natl Acad Sci 108(22):9214–9219PubMedCrossRefPubMedCentralGoogle Scholar
  140. Reddy PP, Barrieras DJ, Wilson G, Bägli DJ, McLORIE GA, Khoury AE, Merguerian PA (2000) Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J Urol 164(3:936–941CrossRefGoogle Scholar
  141. Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT (2010) The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 31(33):8626–8633PubMedPubMedCentralCrossRefGoogle Scholar
  142. Ren X, Moser PT, Gilpin SE, Okamoto T, Wu T, Tapias LF, Mercier FE, Xiong L, Ghawi R, Scadden DT (2015) Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol 33(10):1097–1102PubMedCrossRefPubMedCentralGoogle Scholar
  143. Rosario DJ, Reilly GC, Ali Salah E, Glover M, Bullock AJ, MacNeil S (2008) Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regen Med 3(2):145–146PubMedCrossRefPubMedCentralGoogle Scholar
  144. Ross EA, Williams MJ, Hamazaki T, Terada N, Clapp WL, Adin C, Ellison GW, Jorgensen M, Batich CD (2009) Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol 20(11):2338–2347PubMedPubMedCentralCrossRefGoogle Scholar
  145. Ruszczak Z (2003) Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev 55(12):1595–1611PubMedCrossRefPubMedCentralGoogle Scholar
  146. Ruvinov E, Leor J, Cohen S (2010) The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 31(16):4573–4582PubMedCrossRefPubMedCentralGoogle Scholar
  147. Samouillan V, Dandurand-Lods J, Lamure A, Maurel E, Lacabanne C, Gerosa G, Venturini A, Casarotto D, Gherardini L, Spina M (1999) Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J Biomed Mater Res 46(4):531–538PubMedCrossRefPubMedCentralGoogle Scholar
  148. Sawkins M, Bowen W, Dhadda P, Markides H, Sidney L, Taylor A, Rose F, Badylak S, Shakesheff K, White L (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9(8):7865–7873PubMedPubMedCentralCrossRefGoogle Scholar
  149. Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, Carabasi RA, DiMuzio PJ (2004) Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg 40(1):146–153PubMedCrossRefPubMedCentralGoogle Scholar
  150. Schoene RB (1999) Lung disease at high altitude. Hypoxia: Springer, pp 47–56Google Scholar
  151. Sievert K-D, Fandel T, Wefer J, Gleason CA, Nunes L, Dahiya R, Tanagho EA (2006) Collagen I: III ratio in canine heterologous bladder acellular matrix grafts. World J Urol 24(1):101–109PubMedCrossRefPubMedCentralGoogle Scholar
  152. Soergel TM, Cain MP, Misseri R, Gardner TA, Koch MO, Rink RC (2004) Transitional cell carcinoma of the bladder following augmentation cystoplasty for the neuropathic bladder. J Urol 172((4):1649–1652CrossRefGoogle Scholar
  153. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651PubMedPubMedCentralCrossRefGoogle Scholar
  154. Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang H, Reing J, Gramignoli R, Komori J, Ross M (2011) A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 17(6):677–686PubMedPubMedCentralCrossRefGoogle Scholar
  155. Stats F (2017) National Chronic Kidney Disease Fact SheetGoogle Scholar
  156. Stern MM, Myers RL, Hammam N, Stern KA, Eberli D, Kritchevsky SB, Soker S, Van Dyke M (2009) The influence of extracellular matrix derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo. Biomaterials 30(12):2393–2399PubMedCrossRefPubMedCentralGoogle Scholar
  157. Stoll C, John T, Endres M, Rosen C, Kaps C, Kohl B, Sittinger M, Ertel W, Schulze-Tanzil G (2010) Extracellular matrix expression of human tenocytes in three-dimensional air–liquid and PLGA cultures compared with tendon tissue: Implications for tendon tissue engineering. J Orthop Res 28(9):1170–1177PubMedCrossRefPubMedCentralGoogle Scholar
  158. Stuart K, Panitch A (2008) Influence of chondroitin sulfate on collagen gel structure and mechanical properties at physiologically relevant levels. Biopolymers 89(10):841–851PubMedCrossRefPubMedCentralGoogle Scholar
  159. Sullivan DC, Mirmalek-Sani S-H, Deegan DB, Baptista PM, Aboushwareb T, Atala A, Yoo JJ (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33(31):7756–7764PubMedCrossRefPubMedCentralGoogle Scholar
  160. Syed O, Walters NJ, Day RM, Kim H-W, Knowles JC (2014) Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 10(12):5043–5054PubMedCrossRefPubMedCentralGoogle Scholar
  161. Takami Y, Matsuda T, Yoshitake M, Hanumadass M, Walter R (1996) Dispase/detergent treated dermal matrix as a dermal substitute. Burns 22(3):182–190PubMedCrossRefPubMedCentralGoogle Scholar
  162. Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, Sebire NJ, Smith VV, Fishman JM, Ghionzoli M (2012) A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 33(12):3401–3410PubMedPubMedCentralCrossRefGoogle Scholar
  163. Ungerleider J, Johnson T, Rao N, Christman K (2015) Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods 84:53–59PubMedPubMedCentralCrossRefGoogle Scholar
  164. Urakami S, Shiina H, Enokida H, Kawamoto K, Kikuno N, Fandel T, Vejdani K, Nunes L, Igawa M, Tanagho EA (2007) Functional improvement in spinal cord injury-induced neurogenic bladder by bladder augmentation using bladder acellular matrix graft in the rat. World J Urol 25(2):207–213PubMedCrossRefPubMedCentralGoogle Scholar
  165. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–820PubMedPubMedCentralCrossRefGoogle Scholar
  166. Wainwright D (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21(4):243–248PubMedCrossRefPubMedCentralGoogle Scholar
  167. Wang B, Borazjani A, Tahai M, de Jongh Curry AL, Simionescu DT, Guan J, To, F, Elder SH, Liao J (2010) Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J Biomed Mater Res A 94(4):1100–1110PubMedPubMedCentralGoogle Scholar
  168. Wang L, Johnson JA, Chang DW, Zhang Q (2013) Decellularized musculofascial extracellular matrix for tissue engineering. Biomaterials 34(11):2641–2654PubMedPubMedCentralCrossRefGoogle Scholar
  169. Wang X, Cui J, Zhang BQ, Zhang H, Bi Y, Kang Q, Wang N, Bie P, Yang Z, Wang H (2014) Decellularized liver scaffolds effectively support the proliferation and differentiation of mouse fetal hepatic progenitors. J Biomed Mater Res A 102(4):1017–1025PubMedCrossRefPubMedCentralGoogle Scholar
  170. Wang Y, Bao J, Wu Q, Zhou Y, Li Y, Wu X, Shi Y, Li L, Bu H (2015) Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation 22(1):48–61PubMedCrossRefPubMedCentralGoogle Scholar
  171. Whitlock P, Seyler T, Northam C, Smith T, Poehling G, Koman L, Van Dyke M (2013) Effect of cyclic strain on tensile properties of a naturally derived, decellularized tendon scaffold seeded with allogeneic tenocytes and associated messenger RNA expression. J Surg Orthop Adv 22(3):224–232PubMedCrossRefPubMedCentralGoogle Scholar
  172. Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H (1995) Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 60:S353–S358PubMedCrossRefPubMedCentralGoogle Scholar
  173. Wolf MT, Daly KA, Reing JE, Badylak SF (2012) Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33(10):2916–2925PubMedPubMedCentralCrossRefGoogle Scholar
  174. Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials 26(35):7339–7349PubMedCrossRefPubMedCentralGoogle Scholar
  175. Wu S, Liu Y, Bharadwaj S, Atala A, Zhang Y (2011) Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials 32(5):1317–1326PubMedCrossRefPubMedCentralGoogle Scholar
  176. Yazdani SK, Watts B, Machingal M, Jarajapu YP, Van Dyke ME, Christ GJ (2009) Smooth muscle cell seeding of decellularized scaffolds: the importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels. Tissue Eng A 15(4):827–840CrossRefGoogle Scholar
  177. Yin Z, Chen X, Zhu T, Hu J-j, Song H-x, Shen W-l, Jiang L-y, Heng BC, Ji J-f, Ouyang H-W (2013) The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomater 9(12):9317–9329PubMedCrossRefPubMedCentralGoogle Scholar
  178. Yoo JJ, Meng J, Oberpenning F, Atala A (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51(2):221–225PubMedCrossRefPubMedCentralGoogle Scholar
  179. Youngstrom DW, Barrett JG, Jose RR, Kaplan DL (2013) Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS One 8(5):e64151PubMedPubMedCentralCrossRefGoogle Scholar
  180. Youssif M, Shiina H, Urakami S, Gleason C, Nunes L, Igawa M, Enokida H, Tanagho EA, Dahiya R (2005) Effect of vascular endothelial growth factor on regeneration of bladder acellular matrix graft: histologic and functional evaluation. Urology 66(1):201–207PubMedCrossRefPubMedCentralGoogle Scholar
  181. Zhang F, Zhu C, Oswald T, Lei M-P, Lineaweaver WC (2003) Porcine small intestinal submucosa as a carrier for skin flap prefabrication. Ann Plast Surg 51(5):488–492PubMedCrossRefPubMedCentralGoogle Scholar
  182. Zhao Y, Zhang S, Zhou J, Wang J, Zhen M, Liu Y, Chen J, Qi Z (2010) The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials 31(2):296–307PubMedCrossRefPubMedCentralGoogle Scholar
  183. Zhao Y, Zhang Z, Wang J, Yin P, Zhou J, Zhen M, Cui W, Xu G, Yang D, Liu Z (2012) Abdominal hernia repair with a decellularized dermal scaffold seeded with autologous bone marrow-derived mesenchymal stem cells. Artif Organs 36(3):247–255PubMedCrossRefPubMedCentralGoogle Scholar
  184. Zhu W-d, Xu Y-m, Feng C, Fu Q, Song L-j, Cui L (2010) Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition. World J Urol 28(4):493–498PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyYonsei UniversitySeoulSouth Korea

Personalised recommendations