Advertisement

Overviews of Biomimetic Medical Materials

  • Dipankar Das
  • Insup NohEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1064)

Abstract

This chapter describes the overviews of biomimetic medical materials which covers innovation and significance of terminology, diverse fabrication methods, and technologies ranges from nanotechnology to 3D printing to develop biomimetic materials for medical applications. It also depicts specific fundamental characteristics required for a material to be a model biomimetic material for particular medical application. It basically outlines current statuses of biomimetic medical materials used for tissue engineering and regenerative medicine, drug/protein delivery, bioimaging, biosensing, and 3D bioprinting technology. It also illustrates the effect of functionalization of a material through chemical and biological approaches towards different applications. Not only, the key properties and potential applications of the biomimetic materials, but it also explains the protection and utilization of intellectual property associated with biomedical materials.

Keywords

Biomimetic Drug/protein delivery 3D printing Nanotechnology Intellectual property Tissue engineering 

Notes

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant (2015R1A2A1A10054592).

References

  1. Aime S, Frullano L, Geninatti Crich S (2002) Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. Angew Chem Int Ed 41(6):1017–1019CrossRefGoogle Scholar
  2. An X, Butler TW, Washington M, Nayak SK, Kar S (2011) Optical and sensing properties of 1-pyrenecarboxylic acid-functionalized graphene films laminated on polydimethylsiloxane membranes. ACS Nano 5(2):1003–1011PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bacakova L, Novotná K, Parizek M (2014) Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction. Physiol Res 63:S29PubMedPubMedCentralGoogle Scholar
  4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bar-Cohen Y (2006) Biomimetics: biologically inspired technologies. CRC/Taylor & Francis, Boca Raton isbn:9780849331633Google Scholar
  6. Bello OS, Adegoke KA, Oyewole RO (2013) Biomimetic materials in our world: a review. IOSR J Appl Chem (IOSR-JAC) 5:22–35Google Scholar
  7. Benyus J (1997) Biomimicry: innovation inspired by nature. William Morrow & Company Inc, New York, isbn:978–0688–16099-9Google Scholar
  8. Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA (2006) Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27(1):91–99PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bhattacharya P, Du D, Lin Y (2014) Bioinspired nanoscale materials for biomedical and energy applications. J R Soc Interface 11(95):20131067PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bode SA, Minten IJ, Nolte RJ, Cornelissen JJ (2011) Reactions inside nanoscale protein cages. Nanoscale 3(6):2376–2389PubMedCrossRefPubMedCentralGoogle Scholar
  11. Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S, Bhaduri S (2007) Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C 27(3):372–376CrossRefGoogle Scholar
  12. Branco MC, Schneider JP (2009) Self-assembling materials for therapeutic delivery. Acta Biomater 5(3):817–831PubMedCrossRefPubMedCentralGoogle Scholar
  13. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347CrossRefGoogle Scholar
  14. Chacko RT, Ventura J, Zhuang J, Thayumanavan S (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64(9):836–851PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen A, Bao Y, Ge X, Shin Y, Du D, Lin Y (2012) Magnetic particle-based immunoassay of phosphorylated p53 using protein cage template lead phosphate and carbon nanospheres for signal amplification. RSC Adv 2(29):11029–11034CrossRefGoogle Scholar
  16. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2016) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 20(1):10PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen F, Ni Y, Liu B, Zhou T, Yu C, Su Y, Zhu X, Yu X, Zhou Y (2017) Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym 166:31–44PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chilkoti A, Christensen T, MacKay JA (2006) Stimulus responsive elastin biopolymers: applications in medicine and biotechnology. Curr Opin Chem Biol 10(6):652–657PubMedCrossRefPubMedCentralGoogle Scholar
  19. Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112(5):1047–1055PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chung L, Maestas DR Jr, Housseau F, Elisseeff JH (2017) Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 114:184–192PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6(1):1601118CrossRefGoogle Scholar
  22. Eggermont M, (2008) Biomimetics as problem-solving, creativity and innovation tool. CDEN/C 2E2. Winnipeg, University of Manitoba, Canada, 114:59–67Google Scholar
  23. Entekhabi E, Nazarpak MH, Moztarzadeh F, Sadeghi A (2016) Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater Sci Eng C 69:380–387CrossRefGoogle Scholar
  24. Erik D, Stephen M (2002) Bio-inspired materials chemistry. Adv Mater 14:1–14Google Scholar
  25. Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459PubMedCrossRefPubMedCentralGoogle Scholar
  26. Fan M, Ma Y, Zhang Z, Mao J, Tan H, Hu X (2015) Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering. Mater Sci Eng C 56:311–317CrossRefGoogle Scholar
  27. Gao W (2015) The chemistry of graphene oxide. In: Graphene oxide. Springer, Cham, pp 61–95CrossRefGoogle Scholar
  28. Gardner AB, Lee SK, Woods EC, Acharya AP (2013) Biomaterials-based modulation of the immune system. Bio Med Res Int Article ID 732182, 2013:1–7CrossRefGoogle Scholar
  29. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gelain F, Horii A, Zhang S (2007) Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromol Biosci 7(5):544–551PubMedCrossRefPubMedCentralGoogle Scholar
  31. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214PubMedCrossRefPubMedCentralGoogle Scholar
  32. Groen N, Guvendiren M, Rabitz H, Welsh WJ, Kohn J, de Boer J (2016) Stepping into the omics era: opportunities and challenges for biomaterials science and engineering. Acta Biomater 34:133–142PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20(1):12.  https://doi.org/10.1186/s40824-016-0058-2 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42PubMedCrossRefPubMedCentralGoogle Scholar
  35. Guvendiren M, Molde J, Soares RM, Kohn J (2016) Designing biomaterials for 3D printing. ACS Biomater Sci Eng 2(10):1679–1693PubMedCrossRefPubMedCentralGoogle Scholar
  36. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hatayama T, Nakada A, Nakamura H, Mariko W, Tsujimoto G, Nakamura T (2017) Regeneration of gingival tissue using in situ tissue engineering with collagen scaffold. Oral Surg, Oral Med, Oral Pathol, Oral Radiol 124(4):348–354CrossRefGoogle Scholar
  38. Helms B, Meijer EW (2006) Dendrimers at work. SCIENCE-NEW YORK THEN WASHINGTON 313(5789):929CrossRefGoogle Scholar
  39. Hengstenberg A, Bloch A, Dietzel D, Schuhmann W (2001) Spatially resolved detection of neurotransmitter secretion from individual cells by means of scanning electrochemical microscopy. Angew Chem Int Ed 40:905–908CrossRefGoogle Scholar
  40. Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27(34):5075–5079PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  42. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, Leong KW, Zhao X (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27(27):4035–4040PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hornick JF, Rajan K (2015) Chapter 16: intellectual property in 3d printing and nanotechnology, 3D bioprinting and nanotechnology in tissue engineering. John F. Hornick. Published by Elsevier Inc.Google Scholar
  45. Hou Y, Cai K, Li J, Chen X, Lai M, Hu Y, Luo Z, Ding X, Xu D (2013) Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int J Nanomedicine 8:3619PubMedPubMedCentralGoogle Scholar
  46. Hsieh PC, MacGillivray C, Gannon J, Cruz FU, Lee RT (2006) Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114(7):637–644PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hu SH, Chen YW, Hung WT, Chen IW, Chen SY (2012) Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and Photothermal therapy monitored in situ. Adv Mater 24(13):1748–1754PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Yang L, Wang H, Xiao Y, Rong J (2013) One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B 1(1):39–42CrossRefGoogle Scholar
  49. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686CrossRefGoogle Scholar
  50. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001PubMedCrossRefPubMedCentralGoogle Scholar
  51. Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW (2016) Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater 33:88–95PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, Kim SW (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jeong B, Akter R, Han OH, Rhee CK, Rahman MA (2013) Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: highly sensitive electrochemical immunosensor for protein detection. Anal Chem 85(3):1784–1791PubMedCrossRefPubMedCentralGoogle Scholar
  54. Ji S, Guvendiren M (2017) Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 5:23PubMedCrossRefPubMedCentralGoogle Scholar
  55. Julian FVV, Olga AB, Nikolaj RB, Adrian B, Anja KP (2006) Biomimetics: its practice and theory. J R Soc Interface 3:471–482CrossRefGoogle Scholar
  56. Jung CS, Kim BK, Lee J, Min BH, Park SH (2017) Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med 15:1–8.  https://doi.org/10.1007/s13770-017-0104-8 CrossRefGoogle Scholar
  57. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(4):901–905PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kersey FR, Merkel TJ, Perry JL, Napier ME, DeSimone JM (2012) Effect of aspect ratio and deformability on nanoparticle extravasation through nanopores. Langmuir 28(23):8773–8781PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kim JE, Kim SH, Jung Y (2016) Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng Regen Med 13(6):636–646CrossRefGoogle Scholar
  60. Kolos E, Ruys AJ (2013) Biomimetic scaffold materials used in tissue engineering. J Biomim Biomater Tissue Eng 18:e101.  https://doi.org/10.4172/1662-100X.1000e101 CrossRefGoogle Scholar
  61. Kutlusoy T, Oktay B, Apohan NK, Süleymanoğlu M, Kuruca SE (2017) Chitosan-co-hyaluronic acid porous cryogels and their application in tissue engineering. Int J Biol Macromol 103:366–378PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lee WC, Loh KP, Lim CT (2018) When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials 155:236–250PubMedCrossRefPubMedCentralGoogle Scholar
  63. Li M, Yang X, Ren J, Qu K, Qu X (2012) Using graphene oxide high near-infrared absorbance for Photothermal treatment of Alzheimer's disease. Adv Mater 24(13):1722–1728PubMedCrossRefPubMedCentralGoogle Scholar
  64. Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604PubMedCrossRefPubMedCentralGoogle Scholar
  65. Li C, Faulkner-Jones A, Dun AR, Jin J, Chen P, Xing Y, Yang Z, Li Z, Shu W, Liu D, Duncan RR (2015) Rapid formation of a supramolecular polypeptide–DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew Chem Int Ed 54(13):3957–3961CrossRefGoogle Scholar
  66. Liao S, Chan CK, Ramakrishna S (2008) Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28(8):1189–1202CrossRefGoogle Scholar
  67. Lim KS, Schon BS, Mekhileri NV, Brown GC, Chia CM, Prabakar S, Hooper GJ, Woodfield TB (2016) New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater Sci Eng 2(10):1752–1762CrossRefGoogle Scholar
  68. Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova MA, Zhang G, Lee S, Leapman R (2011) Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett 11(2):814–819PubMedCrossRefPubMedCentralGoogle Scholar
  69. Liu G, Lin Y (2007) Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes. J Am Chem Soc 129(34):10394–10401PubMedCrossRefPubMedCentralGoogle Scholar
  70. Liu JC, Heilshorn SC, Tirrell DA (2004) Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromolecules 5(2):497–504PubMedCrossRefPubMedCentralGoogle Scholar
  71. Liu G, Wang J, Lea SA, Lin Y (2006a) Bioassay labels based on apoferritin nanovehicles. Chembiochem 7(9):1315–1319PubMedCrossRefPubMedCentralGoogle Scholar
  72. Liu G, Wu H, Wang J, Lin Y (2006b) Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay. Small 2(10):1139–1143PubMedCrossRefPubMedCentralGoogle Scholar
  73. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877PubMedCrossRefPubMedCentralGoogle Scholar
  74. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307PubMedCrossRefPubMedCentralGoogle Scholar
  75. Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Klein TJ, Melchels FP, Khademhosseini A, Hutmacher DW (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727PubMedCrossRefPubMedCentralGoogle Scholar
  76. Maeda M, Tani S, Sano A, Fujioka K (1999) Microstructure and release characteristics of the minipellet, a collagen-based drug delivery system for controlled release of protein drugs. J Control Release 62(3):313–324PubMedCrossRefPubMedCentralGoogle Scholar
  77. MaHam A, Tang Z, Wu H, Wang J, Lin Y (2009) Protein-based nanomedicine platforms for drug delivery. Small 5(15):1706–1721PubMedCrossRefPubMedCentralGoogle Scholar
  78. Mazur A, Litt I, Shorr E (1950) Chemical properties of ferritin and their relation to its vasodepressor activity. J Biol Chem 187:473–484PubMedPubMedCentralGoogle Scholar
  79. Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7(3):035006PubMedCrossRefPubMedCentralGoogle Scholar
  80. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773PubMedCrossRefPubMedCentralGoogle Scholar
  81. Nagarajan R (2008) Nanoparticles: building blocks for nanotechnology, nanoparticles: synthesis, stabilization, passivation, and functionalization, chapter 1: ACS Symposium Series, 996:2–14. ISBN:9780841269699eISBN:9780841221390Google Scholar
  82. Nakamura T, Konno K (1954) Studies on ferritin. J Biochem 41(4):499–502CrossRefGoogle Scholar
  83. Napier ME, JM DS (2007) Nanoparticle drug delivery platform. J Macromol Sci Part C: Polym Rev 47(3):321–327Google Scholar
  84. Nassar W, El-Ansary M, Sabry D, Mostafa MA, Fayad T, Kotb E, Temraz M, Saad AN, Essa W, Adel H (2017) Erratum to: umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 21(1):3PubMedCrossRefPubMedCentralGoogle Scholar
  85. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678PubMedCrossRefPubMedCentralGoogle Scholar
  86. Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, Roth AB (2016) Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One 11(7):e0158674PubMedCrossRefPubMedCentralGoogle Scholar
  87. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Pro Polym Sci 33(4):448–477CrossRefGoogle Scholar
  88. Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA (2016) 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2(10):1743–1751CrossRefGoogle Scholar
  89. Ozbolat IT, Moncal KK, Gudapati H (2017) Evaluation of bioprinter technologies. Addit Manuf 13:179–200CrossRefGoogle Scholar
  90. Pan D, Zhang J, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22(6):734–738PubMedCrossRefPubMedCentralGoogle Scholar
  91. Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32(9):889–900CrossRefGoogle Scholar
  92. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217PubMedCrossRefPubMedCentralGoogle Scholar
  93. Park JH, Jang J, Lee JS, Cho DW (2016) Current advances in three-dimensional tissue/organ printing. Tissue Eng Regen Med 13(6):612–621CrossRefGoogle Scholar
  94. Pati F, Jang J, Ha DH, Kim SW, Rhie JW, Shim JH, Kim DH, Cho DW (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935PubMedCrossRefPubMedCentralGoogle Scholar
  95. Patterson J, Martino MM, Hubbell JA (2010) Biomimetic materials in tissue engineering. Mater Today 13(1–2):14–22CrossRefGoogle Scholar
  96. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844–849PubMedCrossRefPubMedCentralGoogle Scholar
  97. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefGoogle Scholar
  98. Ramón-Azcón J, Ahadian S, Estili M, Liang X, Ostrovidov S, Kaji H, Shiku H, Ramalingam M, Nakajima K, Sakka Y, Khademhosseini A (2013) Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater 25(29):4028–4034PubMedCrossRefPubMedCentralGoogle Scholar
  99. Raphael B, Khalil T, Workman VL, Smith A, Brown CP, Streuli C, Saiani A, Domingos M (2017) 3D cell bioprinting of self-assembling peptide-based hydrogels. Mater Lett 190:103–106CrossRefGoogle Scholar
  100. Rashid ST, Alexander GJ (2013) Induced pluripotent stem cells: from Nobel prizes to clinical applications. J Hepatol 58(3):625–629PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ribeiro M, de Moraes MA, Beppu MM, Garcia MP, Fernandes MH, Monteiro FJ, Ferraz MP (2015) Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. Eur Polym J 67:66–77CrossRefGoogle Scholar
  102. Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127(28):10096–10100PubMedCrossRefPubMedCentralGoogle Scholar
  103. Schneider A, Garlick JA, Egles C (2008) Self-assembling peptide nanofiber scaffolds accelerate wound healing. PLoS One 3(1):e1410PubMedCrossRefPubMedCentralGoogle Scholar
  104. Scuderi P, Lam K, Ryan K, Petersen E, Sterling K, Finley P, Ray CG, Slymen D, Salmon S (1986 Dec 13) Raised serum levels of tumour necrosis factor in parasitic infections. Lancet 328(8520):1364–1365CrossRefGoogle Scholar
  105. Segers VF, Tokunou T, Higgins LJ, MacGillivray C, Gannon J, Lee RT (2007) Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116(15):1683–1692PubMedCrossRefPubMedCentralGoogle Scholar
  106. Shafiee A, Atala A (2016) Printing technologies for medical applications. Trends Mol Med 22(3):254–265PubMedCrossRefPubMedCentralGoogle Scholar
  107. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382PubMedCrossRefPubMedCentralGoogle Scholar
  108. Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20(35):7491–7496CrossRefGoogle Scholar
  109. Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U (2017) Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov Today 22(2):314–326PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sheehy EJ, Cunniffe GM, O'Brien FJ (2018) Collagen-based biomaterials for tissue regeneration and repair. In: Peptides and proteins as biomaterials for tissue regeneration and repair. Woodhead Publishing, Duxford, pp 127–150CrossRefGoogle Scholar
  111. Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A (2011) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6(1):362–372PubMedCrossRefPubMedCentralGoogle Scholar
  112. Shin YC, Kim J, Kim SE, Song SJ, Hong SW, Oh JW, Lee J, Park JC, Hyon SH, Han DW (2017) RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering. Regen biomater 4(3):159–166PubMedCrossRefPubMedCentralGoogle Scholar
  113. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355PubMedCrossRefGoogle Scholar
  114. Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126PubMedCrossRefPubMedCentralGoogle Scholar
  115. Suci PA, Kang S, Young M, Douglas T (2009) A streptavidin-protein cage janus particle for polarized targeting and modular functionalization. J Am Chem Soc 131:9164–9165PubMedCrossRefPubMedCentralGoogle Scholar
  116. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212PubMedCrossRefPubMedCentralGoogle Scholar
  117. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  118. Tan YJ, Tan X, Yeong WY, Tor SB (2016) Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: a new biofabrication strategy. Sci Rep 6:39140PubMedCrossRefPubMedCentralGoogle Scholar
  119. Tang Z, Wu H, Zhang Y, Li Z, Lin Y (2011) Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Anal Chem 83(22):8611–8616PubMedCrossRefPubMedCentralGoogle Scholar
  120. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24(39):5333–5338PubMedCrossRefPubMedCentralGoogle Scholar
  121. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29(2):138–175CrossRefGoogle Scholar
  122. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528PubMedCrossRefPubMedCentralGoogle Scholar
  123. Turyanska L, Bradshaw TD, Sharpe J, Li M, Mann S, Thomas NR, Patane A (2009) The biocompatibility of Apoferritin-encapsulated PbS quantum dots. Small 5(15):1738–1741PubMedCrossRefPubMedCentralGoogle Scholar
  124. Uchida M, Klem MT, Allen M, Suci P, Flenniken M, Gillitzer E, Varpness Z, Liepold LO, Young M, Douglas T (2007) Biological containers: protein cages as multifunctional Nanoplatforms. Adv Mater 19:1025–1042CrossRefGoogle Scholar
  125. Vunjak-Novakovic G, Scadden DT (2011) Biomimetic platforms for human stem cell research. Cell Stem Cell 8(3):252–261PubMedCrossRefPubMedCentralGoogle Scholar
  126. Walimbe T, Panitch A, Sivasankar PM (2017) A review of hyaluronic acid and hyaluronic acid-based hydrogels for vocal fold tissue engineering. J Voice 31(4):416–423PubMedCrossRefPubMedCentralGoogle Scholar
  127. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11(4):889–892CrossRefGoogle Scholar
  128. Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y (2010a) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132(27):9274–9276PubMedCrossRefPubMedCentralGoogle Scholar
  129. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010b) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798PubMedCrossRefPubMedCentralGoogle Scholar
  130. Wang C, Liu N, Allen R, Tok JB, Wu Y, Zhang F, Chen Y, Bao Z (2013a) A rapid and efficient self-healing Thermo-reversible elastomer crosslinked with graphene oxide. Adv Mater 25(40):5785–5790PubMedCrossRefPubMedCentralGoogle Scholar
  131. Wang X, Cai X, Hu J, Shao N, Wang F, Zhang Q, Xiao J, Cheng Y (2013b) Glutathione-triggered “off–on” release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. J Am Chem Soc 135(26):9805–9810PubMedCrossRefPubMedCentralGoogle Scholar
  132. Wang X, Zhang Y, Li T, Tian W, Zhang Q, Cheng Y (2013c) Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. Langmuir 29(17):5262–5270PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wang Y, Li Z, Weber TJ, Hu D, Lin CT, Li J, Lin Y (2013d) In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal Chem 85(14):6775–6782CrossRefGoogle Scholar
  134. Weiss NO, Zhou H, Liao L, Liu Y, Jiang S, Huang Y, Duan X (2012) Graphene: an emerging electronic material. Adv Mater 224(43):5782–5825CrossRefGoogle Scholar
  135. Wu P, Qian Y, Du P, Zhang H, Cai C (2012) Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. J Mater Chem 22(13):6402–6412CrossRefGoogle Scholar
  136. Wüst S, Müller R, Hofmann S (2015) 3D bioprinting of complex channels—effects of material, orientation, geometry, and cell embedding. J Biomed Mater Res A 103(8):2558–2570PubMedCrossRefPubMedCentralGoogle Scholar
  137. Xie X, Zhou Y, Bi H, Yin K, Wan S, Sun L (2013) Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci Rep 3:2117PubMedCrossRefPubMedCentralGoogle Scholar
  138. Yang K, Hu L, Ma X, Ye S, Cheng L, Shi X, Li C, Li Y, Liu Z (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24(14):1868–1872PubMedCrossRefPubMedCentralGoogle Scholar
  139. Yang K, Feng L, Shi X, Liu Z (2013a) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42(2):530–547PubMedCrossRefPubMedCentralGoogle Scholar
  140. Yang Y, Asiri AM, Tang Z, Du D, Lin Y (2013b) Graphene based materials for biomedical applications. Mater Today 16(10):365–373CrossRefGoogle Scholar
  141. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393PubMedCrossRefGoogle Scholar
  142. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544PubMedCrossRefPubMedCentralGoogle Scholar
  143. Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011a) Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7(4):460–464PubMedCrossRefPubMedCentralGoogle Scholar
  144. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011b) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–8561PubMedCrossRefPubMedCentralGoogle Scholar
  145. Zhang Y, Tang Z, Wang J, Wu H, Lin CT, Lin Y (2011c) Apoferritin nanoparticle: a novel and biocompatible carrier for enzyme immobilization with enhanced activity and stability. J Mater Chem 21(43):17468–17475CrossRefGoogle Scholar
  146. Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liu C (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22(15):7461–7467CrossRefGoogle Scholar
  147. Zhang H, Zhai Y, Wang J, Zhai G (2016) New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng C 60:560–568CrossRefGoogle Scholar
  148. Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J (2013) RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7(6):4830–4837PubMedCrossRefPubMedCentralGoogle Scholar
  149. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613PubMedCrossRefPubMedCentralGoogle Scholar
  150. Zhu J, Tang C, Kottke-Marchant K, Marchant RE (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20(2):333–339PubMedCrossRefPubMedCentralGoogle Scholar
  151. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924PubMedCrossRefPubMedCentralGoogle Scholar
  152. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem comm 47(24):6858–6860PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringSeoul National University of Science and TechnologySeoulSouth Korea
  2. 2.Convergence Institute of Biomedical Engineering and BiomaterialsSeoul National University of Science and TechnologySeoulSouth Korea

Personalised recommendations