Endophytic Fungi: Carrier of Potential Antioxidants

  • Jyoti Goutam
  • Ranjana Singh
  • Rajyoganandh S. Vijayaraman
  • Mukesh Meena


The asymptomatic association of fungi with plants is termed as endophytes. These plant-associated mycoflora are a promising source of bioactive natural products. Metabolites released by endophytes not only possess many important functions but also supply antioxidant compounds, which are expected to fight disease due to its anti-aging properties. Currently, hectic lifestyle and stressful environment have become the prime cause for the generation of excessive free radicals in the human body. These free radicals create a destructive process in the body cells which leads to various chronic diseases and deleterious effects. Antioxidants are the chemical moieties that engulf free radicals which are followed by delaying cell damages and health disorders. Antioxidant moieties are generally synthesized by both plants and other microorganisms to survive adverse situations such as harmful radiations and abiotic and biotic stress. Hence, they are beneficial to both plants and animals which fed on the plant, thereby decreasing the reactive oxygen species level which are elevated in their normal metabolism process. Collectively, they help us to properly detoxify the body from these harmful molecules. This overview will discuss about antioxidants and highlight the different antioxidant compounds that have been derived from endophytic fungi. Although synthetic antioxidant compounds are being used, but due to their side effects and less bioavailability, they are not widely accepted. Therefore endophytes could prove to be a natural resource for sustainable antioxidant.


Endophytic fungi Antioxidant compounds Free radicals 


  1. Altemoller M, Gehring T, Cudaj J, Podlech J, Goesmann H, Feldmann C, Rothenberger A (2009) Total synthesis of Graphislactones A C D and H of ulocladol and of the originally proposed and revisited structures of graphislactones E and F. Eur J Org Chem: 2130–2140Google Scholar
  2. Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Nat AcadSci USA 73:6858–6862CrossRefGoogle Scholar
  3. Bamford PC, Norris GLF, Ward G (1961) Flavipin production by Epicoccum species. Trans Brit MycolSoc 44:354–356CrossRefGoogle Scholar
  4. Bauer J, Waltenberger B, Noha SM, Schuster D, Rollinger JM, Boustie J, Chollet-Krugler M, Stuppner H, Werz O (2012) Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. Chem Med Chem 7(12):2077–2081CrossRefPubMedGoogle Scholar
  5. Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247CrossRefGoogle Scholar
  6. Burns J, Gardner PT, Matthews D, Duthie GG, Lean MEJ, Crozier A (2001) Extraction of phenolics and changes in antioxidant activity of red wines during vinification. J Agric Food Chem 49:5797–5808CrossRefPubMedGoogle Scholar
  7. Chen AY, Chen YC (2013) A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 138:2099–2107CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dugas AJ, Castaneda-Acosta J, Bonin GC, Price KL, Fischer NH, Winston GWJ (2000) Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: structure-activity relationships. Nat Prod 63:327–331CrossRefGoogle Scholar
  9. Gamble PE, Burke J (1984) Effect of water stress on the chloroplast antioxidant system. Plant Physiol 76:615–621CrossRefPubMedPubMedCentralGoogle Scholar
  10. Guimares DO, Borges WO, Kawano CY, Riebeiro PH, Goldman GH, Nomizo A, Thiemann OH, Oliva G, Lopes NP, Pupo MT (2008) Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia. FEMS Immun Med Microbiol 52:134–144CrossRefGoogle Scholar
  11. Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724CrossRefPubMedGoogle Scholar
  12. Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476CrossRefGoogle Scholar
  13. Heinig S, Scholz S, Wein J (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170CrossRefGoogle Scholar
  14. Hormazabala E, Schmeda-Hirschmanna G, Asudillo L, Rodriguez J, Theodulozb C (2005) Metabolites from Microsphaeropsis olivacea, an endophytic fungus of Pilgerodendron uviferum. Naturforschung 60:11–21CrossRefGoogle Scholar
  15. Huang WY, Cai YZ, Xing J, Corke H, Sun MA (2007) Potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot 61:14–30CrossRefGoogle Scholar
  16. Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X, He XR (2014) Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol 10:1237–1243CrossRefGoogle Scholar
  17. Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoid biosynthetic pathway in plants: func. evol. Bioessays 16:123CrossRefGoogle Scholar
  18. Kumar KC, Müller K (1999) Lichen metabolites. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J Nat Prod 62:821–823CrossRefPubMedGoogle Scholar
  19. Landis GN, Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126:365–379CrossRefPubMedGoogle Scholar
  20. Lang G, Cole ALJ, Blunt JW, Robinson WT, Munro MHG (2007) Excelsione, a depsidone from an endophytic fungus isolated from the New Zealand endemic tree Knightia excels. J Nat Prod 70:310–311CrossRefPubMedGoogle Scholar
  21. Li Y, Song YC, Liu JY, Ma YM, Tan RX (2005) Anti-helicobacter pylori substances from endophytic fungal cultures. W J Microbiol Biotechnol 21:553–558CrossRefGoogle Scholar
  22. Li EW, Jiang LH, Guo LD, Zhang H, Che YS (2008) Pestalachlorides A C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899CrossRefPubMedGoogle Scholar
  23. Lippman SM, Benner SE, Hong WK (1994) Cancer chemoprevention. J Clin Oncol 12:851–873CrossRefPubMedGoogle Scholar
  24. Lopez OG, Trigos A, Fernandez FJ, Morales MJ, Castaneda GS (2007) Tyrosol and tryptophol produced by Ceratocystis adipose. World J Microbiol Biotechnol 23:1473–1477CrossRefGoogle Scholar
  25. Mates JM, Perez-Gomez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603CrossRefPubMedGoogle Scholar
  26. Nawar WF (1996) Lipids. In: Fennema O (ed) Food Chem, 3rd edn. Marcel Dekker, New York, pp 225–320Google Scholar
  27. Neamati N, Hong H, Mazumder A, Wang S, Sunder S, Nicklaus MC, Milne GW, Proksa B, Pommier Y (1997) Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. J Med Chem 40:942–951CrossRefPubMedGoogle Scholar
  28. Nielsen J, Nielsen PH, Frisvad JC (1998) Fungal depside, guisinol, from a marine derived strain of Emericella unguis. Phytochemistry 50:263–265CrossRefGoogle Scholar
  29. Nitao JK, Meyer SLF, Chitwood DJ (1999) In vitro assays of Meloidogyne incognita and Heteroderaglycines for detection of nematode-antagonistic fungal compounds. J Nematol 31:172–183PubMedPubMedCentralGoogle Scholar
  30. Overeem JC, Van Dijkman A (1968) Total synthesis of graphislactone. Rec Trav Chim Pays-Bas 87:940–944CrossRefGoogle Scholar
  31. Papas AM (ed) (1998) Antioxidant status, diet, nutrition and health. CRC Press, Boca RatonGoogle Scholar
  32. Rababah TM, Ereifej KI, Howard L (2005) Effect of ascorbic acid and dehydration on concentrations of total phenolics, antioxidant capacity, anthocyanins, and color in fruits. J Agric Food Chem 53:4444–4447CrossRefPubMedGoogle Scholar
  33. Raistrick H, Rudman P (1956) Flavipin, A crystalline metabolite of Aspergillus flavipes Thom & Church and Aspergillus terreus thom. Studies in the biochemistry of micro-organisms. Biochem J 63(3):395–406CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ramos S (2007) Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem 18:427–442CrossRefPubMedGoogle Scholar
  35. Reynertson KA, Wallace AM, Adachi S, Gil RR, Yang H, Basile MJ, Darmiento J, Weinstein IB, Kennelly EJ (2006) Bioactive depsides and anthocyanins from jaboticaba (Myrciaria cauliflora). J Nat Prod 69:1228–1230CrossRefPubMedGoogle Scholar
  36. Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841CrossRefPubMedGoogle Scholar
  37. Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759CrossRefPubMedGoogle Scholar
  38. Smith JA, Maloney DJ, Clark DE, Xu Y, Hecht SM, Lannigan DA (2006) Influence of rhamnose substituents on the potency of SL0101, an inhibitor of the Ser/Thr kinase, RSK. Bioorg Med Chem 14:6034–6042CrossRefPubMedGoogle Scholar
  39. Somerset SM, Johannot L (2008) Dietary flavonoid sources in Australian adults. Nutr Cancer 60:442–449CrossRefPubMedGoogle Scholar
  40. Song YC, Huang WY, Sun C, Wang FW, Tan RX (2005) Characterization of Graphislactone A as the antioxidant and free radical-scavenging substance from the culture of Cephalosporium sp. IFB-E001, an endophytic fungus in Trachelospermum jasminoides. Biol Pharm Bull 28:506–509CrossRefPubMedGoogle Scholar
  41. Specian V, Sarrgiotto HM, Pamphile AJ, Clemente E (2012) Chemical characterization of bioactive compounds from endophytic fungus Diaporthe Helianthi isolated from Luehea Divaicata. Braz J Microbiol: 1174–1182Google Scholar
  42. Strobel GA, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Res 67:491–502CrossRefGoogle Scholar
  43. Stocker R, Yamamoto Y, McDonagh AF, Glazer A, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046CrossRefPubMedGoogle Scholar
  44. Strobel G, Ford E, Worapoang J, Karper JK, Arif AM, Grant DM, Fung PC, Ming WCR (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183CrossRefPubMedGoogle Scholar
  45. Tanahashi T, Takenaka Y, Nagakura N, Hamada N (2003) 6H-dibenzo[b,d]pyran-6-one derivatives from the cultured lichen mycobionts of Graphis spp. and their biosynthetic origin. Phytochemistry 62:71–75CrossRefPubMedGoogle Scholar
  46. Valentine IK, Maria VK, Bruno B (2003) Phenolic cycle in plants and environment. J Mol Cell Biol 2:13–18Google Scholar
  47. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human diseases. Int J Biochem Cell Biol 39:44–84CrossRefGoogle Scholar
  48. Wang S, Li XM, Teuscher F, Li DL, Diesel A, Ebel R, Proksch P, Wang BG (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomiumglobosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69(11):1622–1625CrossRefPubMedGoogle Scholar
  49. Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Alden Press Limited, OxfordGoogle Scholar
  50. Willis LM, Shukitt-Hale B, Joseph JA (2009) Recent advances in berry supplementation and age-related cognitive decline. Curr Clin Nutr Metabol Care 12:91–94CrossRefGoogle Scholar
  51. Womersley JS (1995) Handbooks of the Flora of Papua New Guinea. Melbourn e University Press, MelbourneGoogle Scholar
  52. Ye Y, Xiao Y, Ma L, Li H, Xie Z, Wang M, Ma H, Tang H, Liu J (2013) Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity biotechnological products and process engineering. Appl Microbiol Biotechnol 97:7131–7139CrossRefPubMedGoogle Scholar
  53. Zhang HW, Huang WY, Song YC, Chen JR, Tan RX (2005) Four 6H-dibenzo [b, d] pyran-6-one derivatives produced by the endophyte Cephalosporium acremonium IFB-E007. Helv Chim Acta 88:2861–2864CrossRefGoogle Scholar
  54. Zhang Y, Chen AY, Li M, Chen C, Yao Q (2008) Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res 148:17–23CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jyoti Goutam
    • 1
  • Ranjana Singh
    • 2
  • Rajyoganandh S. Vijayaraman
    • 3
  • Mukesh Meena
    • 4
    • 1
  1. 1.Mycopathology and Microbial Technology Laboratory, Centre of Advance Study in Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Centre of Advance Study in Physics, Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of MicrobiologySri Ramachandra Medical CollegePorur, ChennaiIndia
  4. 4.Centre for Transgenic Plant DevelopmentDepartment of Biotechnology, Faculty of Science, Jamia HamdardNew DelhiIndia

Personalised recommendations