Bioethanol Production from Renewable Biomass by Yeast

  • Ajay Kumar
  • Ranjan Deb
  • Joginder Singh


Bioethanol produced from renewable biomass such as lignocellulosic materials like potato peel waste, wood, and agricultural and forest residues has the potential to replace the fuel extracted from nonrenewable resources. The main step involved is hydrolysis which enables the hemicelluloses and cellulose present in the renewable biomass to be converted into monomeric sugars. The process included a basic pretreatment of the renewable biomass with different concentrations acid, base, ionic liquid, etc. to get the maximum concentration of reducing sugars and nonreducing sugars. Media optimization is a basic step which can be achieved by adding different concentrations of yeast extract, peptone, KH2PO4, MgSO4.7H2O, (NH2)2 SO4, and glucose and subjected to fermentation. Media is supplemented by the addition of organic and inorganic nitrogen source for better fermentation and high yield. FTIR is used to analyze the structure of pretreated biomass, while HPLC is used to determine the concentration of reducing sugars. Formation of ethanol and by-products such as acetic acid is analyzed by GC-MS method.


Potato peel waste Bioethanol Hydrolysis Pretreatment Optimization Fermentation Lignocellulosic biomass FTIR GC-MS HPLC Ethanol Yeast 


  1. Agustini L, Efiyanti L, Faulina SA, Santoso E (2012) Isolation and characterization of cellulase- and xylanase- producing microbes isolated from Tropical Forests in Java and Sumatra, 3(3):154–167Google Scholar
  2. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314(5805):1565–1568CrossRefPubMedGoogle Scholar
  3. Alvira P, Ballesteros M, Negro MJ (2010) Bioresource technology pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. CrossRefPubMedGoogle Scholar
  4. Amado IR, Franco D, Sánchez M, Zapata C, Vázquez JA (2014) Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem 165:290–299. CrossRefPubMedGoogle Scholar
  5. Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30(10):1898–1902. CrossRefPubMedGoogle Scholar
  6. Barcelos CA, Maeda RN, Santa Anna LMM, Pereira N (2016) Sweet sorghum as a whole-crop feedstock for ethanol production. Biomass Bioenergy 94:46–56CrossRefGoogle Scholar
  7. Berna G (1998) Integrated biomass system. Office for Official Publications of the EC, Luxembourg, p 27Google Scholar
  8. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493CrossRefGoogle Scholar
  9. Bridgwater AV, Elliott DC, Fagernäs L, Gifford JS, Mackie KL, Toft AJ (1995) The nature and control of solid, liquid and gaseous emissions from the thermochemical processing of biomass. Biomass Bioenergy 9(1–5):325–341CrossRefGoogle Scholar
  10. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. 2011.
  11. Bhandari N, Macdonald DG, Bakhshi NN (1984) Kinetic studies of corn stover saccharification using sulphuric acid. Biotechnol Bioeng 26(4):320–327CrossRefPubMedGoogle Scholar
  12. Cai D, Dong Z, Wang Y, Chen C, Li P, Qin P et al (2016) Biorefinery of corn cob for microbial lipid and bio-ethanol production: an environmental friendly process. Bioresour Technol 211:677–684CrossRefPubMedGoogle Scholar
  13. Cavka A, Jönsson LJ (2013) Bioresource technology detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresour Technol 136:368–376. CrossRefPubMedGoogle Scholar
  14. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5(6):578CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duruyurek M, Dusgun C, Gulhan MF, Selamoglu Z (2015) Production of bioethanol from waste potato. Turk J Agric Food Sci Technol 3(5):331–334Google Scholar
  16. Dussán KJ, Silva DD, Perez VH, da Silva SS (2016) Evaluation of oxygen availability on ethanol production from sugarcane bagasse hydrolysate in a batch bioreactor using two strains of xylose-fermenting yeast. Renew Energy 87:703–710CrossRefGoogle Scholar
  17. Elgharbawy AA, Moniruzzaman M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109(May):252–267. CrossRefGoogle Scholar
  18. El-Zawawy WK, Ibrahim MM, Abdel-Fattah YR, Soliman NA, Mahmoud MM (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84(3):865–871CrossRefGoogle Scholar
  19. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production, (July), pp 41–65Google Scholar
  20. Izmirlioglu G, Demirci A (2016) Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel 181:643–651. CrossRefGoogle Scholar
  21. Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. In: Twenty-first symposium on biotechnology for fuels and chemicals (pp. 81–96). Humana Press, Totowa, NJGoogle Scholar
  22. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63(5):495–509CrossRefGoogle Scholar
  23. Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:1–10CrossRefGoogle Scholar
  24. Ko JK, Bak JS, Jung MW, Lee HJ, Choi IG, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100(19):4374–4380CrossRefPubMedGoogle Scholar
  25. Krishnan MS, Ho NW, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant saccharomyces 1400 (pLNH33). Appl Biochem Biotechnol 78(1–3):373–388CrossRefGoogle Scholar
  26. Laopaiboon L, Thanonkeo P, Jaisil P, Laopaiboon P (2007) Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae. World J Microbiol Biotechnol 23(10):1497–1501CrossRefGoogle Scholar
  27. Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn Stover using Saccharomyces cerevisiae 424A (LNH-ST). Proc Natl Acad Sci 106(5):1368–1373CrossRefPubMedGoogle Scholar
  28. Li P, Cai D, Luo Z, Qin P, Chen C, Wang Y et al (2016) Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresour Technol 206:86–92CrossRefPubMedGoogle Scholar
  29. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467CrossRefGoogle Scholar
  30. Minal D, Deshpande RS (2010) Biofuel from cellulosic agricultural waste. Int J Chem Eng Res 2(2):197–217Google Scholar
  31. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. CrossRefPubMedGoogle Scholar
  32. Nahyun P (2015) Organosolv pretreatment with various catalysts for enhancing enzymatic hydrolysis of pitch pine ( Pinus rigida ). Bioresour Technol 101(18):7046–7053. CrossRefGoogle Scholar
  33. Palmqvist E (2000) Fermentation of lignocellulosic hydrolysates . II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  34. Paulov L (2017) Advanced fermentation processes, (April).
  35. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conser Recycl 50:1–39.
  36. Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol 213:299. CrossRefGoogle Scholar
  37. Richelle A, Ben Tahar I, Hassouna M, Bogaerts P (2015) Macroscopic modeling of bioethanol production from potato peel wastes in batch cultures supplemented with inorganic nitrogen. Bioprocess Biosyst Eng 38(9):1819–1833. CrossRefPubMedGoogle Scholar
  38. Ropars M, Marchal R, Pourquid J, Vandecasteele R (1992) Large-scale enzymatic hydrolysis of agricultural lignocellulosic biomass . Part 1 : pretreatment procedures. Bioresour Technol 42:197–204CrossRefGoogle Scholar
  39. Saeman JF (1945) Kinetics of wood saccharification. Hydrolysis ofcellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52CrossRefGoogle Scholar
  40. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295CrossRefPubMedGoogle Scholar
  41. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27. CrossRefGoogle Scholar
  42. Sebayang AH, Masjuki HH, Ong HC, Dharma S, Silitonga AS, Kusumo F, Milano J (2017) Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with an ant colony. Ind Crop Prod 97:146–155. CrossRefGoogle Scholar
  43. Sheikh RA, Al-Bar OA, Soliman YMA (2016) Biochemical studies on the production of biofuel (bioethanol) from potato peel wastes by Saccharomyces cerevisiae: effects of fermentation periods and nitrogen source concentration. Biotechnol Biotechnol Equip 30(3):497–505. CrossRefGoogle Scholar
  44. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16(3):950–963CrossRefGoogle Scholar
  45. Song L, Yu H, Ma F, Zhang X (2013) Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover. BioResources 8(3):3802–3816CrossRefGoogle Scholar
  46. Szczodrak J, Fiedurek JAN (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10(95):367–375CrossRefGoogle Scholar
  47. Taha M, Foda M, Shahsavari E, Aburto-medina A, Adetutu E, Ball A (2016) ScienceDirect commercial feasibility of lignocellulose biodegradation : possibilities and challenges. Curr Opin Biotechnol 38:190–197. CrossRefPubMedGoogle Scholar
  48. Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36(12):4406–4409CrossRefGoogle Scholar
  49. Van Vleet JH, Jeffries TW (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 20(3):300–306CrossRefPubMedGoogle Scholar
  50. Wang F, Jiang Y, Guo W, Niu K, Zhang R, Hou S et al (2016) An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnol Biofuels 9(1):50. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wei N, Oh EJ, Million G, Cate JH, Jin YS (2015) Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synth Biol 4(6):707–713CrossRefPubMedGoogle Scholar
  52. Wettstein SG, Alonso DM, Gürbüz EI, Dumesic JA (2012) A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr Opin Chem Eng 1(3):218–224CrossRefGoogle Scholar
  53. Wu WH, Hung WC, Lo KY, Chen YH, Wan HP, Cheng KC (2016) Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. Bioresour Technol 201:27–32CrossRefPubMedGoogle Scholar
  54. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. CrossRefPubMedGoogle Scholar
  55. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12):1781–1788CrossRefGoogle Scholar
  56. Yuk IH, Zhang JD, Ebeling M, Berrera M, Gomez N, Werz S, Szperalski B (2014) Effects of copper on cho cells: insights from gene expression analyses. Biotechnology:1–34.
  57. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774. CrossRefGoogle Scholar
  58. Zacchi G (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12).
  59. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56(1):17–34CrossRefPubMedGoogle Scholar
  60. Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824CrossRefPubMedGoogle Scholar
  61. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ajay Kumar
    • 1
  • Ranjan Deb
    • 1
  • Joginder Singh
    • 1
  1. 1.Department of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia

Personalised recommendations