Advertisement

Multifactorial Role of Arbuscular Mycorrhizae in Agroecosystem

  • U. N. Bhale
  • S. A. Bansode
  • Simranjeet Singh
Chapter

Abstract

Arbuscular mycorrhizal fungi (AMF) are naturally occurring organisms and associated with most of the plant families (90%). The main mechanism of AMF is the uptake of nutrients and water from the soil when colonized and through hyphae glomalin (biological glue) produced. AMF are tolerant to different environmental conditions. However, AMF also are in microbial activity. AMF are predictable biocontrol agents in disease management and in plant health. In the agricultural point of view, AMF improved nutrition and enhanced plant growth. In the recent years of organic and sustainable products, reduction in chemical fertilizers application and biological control of plant pathogens are a goal of governments, producers and food safety organizations; AMF, in addition to other benefits and microorganism can access this kind of production. Some important soil-borne phytopathogenic diseases are controlled by AMF especially Glomus species. Some antagonists’ microbes could also obstruct with AMF fungi and positive interaction with other microorganisms for biomass and yield. AMF have multifaceted approaches in the different agroecosystem. Therefore this article presents an overview of current knowledge on mycorrhiza and their potential benefits to agriculture ecosystem.

Keywords

Mycorrhizae Nutrients Biofertilizer Bioprotectant Sustainable agriculture 

References

  1. Aboul-Nasr A (1996) Effects of vesicular-arbuscular mycorrhiza on Tageteserecta and Zinnia elegans. Mycorrhiza 6:61–64CrossRefGoogle Scholar
  2. Altieri MA (2002) Agroecology: the sciences of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93:1–24CrossRefGoogle Scholar
  3. Arriagada C, Pacheco P, Pereira G, Machuca A, Alvear M, Ocampo JA (2009) Effect of arbuscular mycorrhizal fungal inoculation on Eucalyptus globulus seedlings and some soil enzyme activities under application of sewage sludge amendment. J Soil Sci Plant Nutr 9(2):89–101Google Scholar
  4. Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  5. Bailey JE, Safir OR (1978) Effect of benomyl on soybean endomycorrhizae. Phytopathology 68:1810–1812CrossRefGoogle Scholar
  6. Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108(7):1288–1293Google Scholar
  7. Bagyaraj DJ, Menge JA (1978) Interaction between a VA mycorrhiza and Azotobacter and their effects on the rhizosphere microflora and plant growth. New Phytol 80:567–573CrossRefGoogle Scholar
  8. Bagyaraj DJ, Chawla G (2012) Status and prospects for enhancing the uptake of antagonistic organisms for nematode management in India. NBAII Publication, Bangalore, pp 74–89Google Scholar
  9. Barrows JB, Roncadori RW (1977) Endomycorrhizal synthesis by Gigaspora margarita in poinsettia. Mycologia 69(6):1173–1184CrossRefGoogle Scholar
  10. Barea JM, Palenzuela J, Cornejo P, Sánchez-Castro I, Navarro-Femándcz C, Lopéz-García A, Estrada B, Azcón R, Ferrol N, Azcón-Aguilar C (2011) Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. J Arid Environ 75:1292–1301CrossRefGoogle Scholar
  11. Bhattacharya PM, Paul AK, Saha J, Chaudhuri S (2002) Changes in the root development pattern of bamboo and sweet orange plants upon arbuscular mycorrhization. Mycorrhiza News 14(1):15–18Google Scholar
  12. Berreck M, Haselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants. Mycorrhiza 10:275–280CrossRefGoogle Scholar
  13. Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescensA6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111(3):279–288CrossRefGoogle Scholar
  14. Bhale UN, Sawant VS, Bansode SA (2014) River sedimentary soils retort to biomass production of Soybean (Glycine max) and arbuscular mycorrhizal fungal (AMF) status. Int J Adv Lif Sci 6(5):510–515Google Scholar
  15. Bansode SA, Sawant VS, Bhale UN (2014) Biomass production of sunflower plant and pretense of Arbuscular Mycorrhizal Fungi (AMF) in newly renovated agricultural land. Flora and Fauna 20(2):191–195Google Scholar
  16. Bolan NS (1991) A critical review of the role of mycorrhizae fungi in the uptake of phosphorus byplants. Plant Soil 134:189–207CrossRefGoogle Scholar
  17. Bouwmeester HJ, Roux E, López-Ráez JA, Beeard G (2007) Rhizosphere communication of plants, parasitie plants and AM fungi. Trends Plant Sci 12:224–230PubMedCrossRefGoogle Scholar
  18. Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil borne fungal pathogens. Appl Environ Microbiol 65:5148–5150PubMedPubMedCentralGoogle Scholar
  19. Carling DE, Roncadori RW, Hussey RS (1996) Interactions of arbuscular mycorrhizae, Meloidogynearenaria, and phosphorus fertilization on peanut. Mycorrhiza 6:9–13CrossRefGoogle Scholar
  20. Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoidsin roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302:33–43CrossRefGoogle Scholar
  21. Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232CrossRefGoogle Scholar
  22. Carvalho L, Caçador I, Martins-Loução M (2006) Arbuscular mycorrhizal fungi enhance root cadmium and copper accumulation in the roots of the salt marsh plant Aster tripolium L. Plant Soil 285(1–2):161–169CrossRefGoogle Scholar
  23. Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225CrossRefGoogle Scholar
  24. Chandra S, Khare V, Kehri HK (2007) Evaluation of Arbuscular Mycorrhizal Fungi against Macrophomina phaseolina causing dry root-rot of urd and mung bean. Indian Phytopathology 60(1):42–47Google Scholar
  25. Chaudhary KK, Kaul RK (2013) Efficacy of Pasteuria penetrans and various oil seed cakes in management of Meloidogyne incognita in Chilli pepper (Capsicum annuum L.). J Agr Sci Tech 15:617–626Google Scholar
  26. Clark RB (2002) Differences among mycorrhizal fungi for mineral uptake per root length of switch grass grown in acidic soil. J Plant Nutr 25(8):1753–1772CrossRefGoogle Scholar
  27. Douds DD, Nagahashi G (2000) Signalling and recognition events prior to colonisation of Rootsby arbuscular mycorrhizal Fungi. In: Podila G, Douds DD (eds) Current advances in mycorrhizae research. APS Press, Minnesota, pp 11–18Google Scholar
  28. Estrada-Luna AA, Davies FT Jr, Egilla JN (2000) Mycorrhizal fungi enhancement of growth and gas exchange of micropropagated guava plantlets (Psidium guajava L.) during ex vitro acclimatization and plant establishment. Mycorrhiza 10:1–8CrossRefGoogle Scholar
  29. Farzaneh M, Vierheilig H, Lössl A, Kaul HP (2011) Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ 57(10):465–470CrossRefGoogle Scholar
  30. Feldman F, Boyle C (1998) Weed-mediated stability of arbuscular mycorrhizal fungi effectiveness in maize monocultures. J Appl Bot 73:1–5Google Scholar
  31. Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when non mycorrhizal. Plant Soil 290:283–291CrossRefGoogle Scholar
  32. Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li S, Liao H (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. Public Libr Sci one 7(3):e33977Google Scholar
  33. Garcia VI, Mendoza RE (2007) Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Mycorrhiza 17:167–174PubMedCrossRefGoogle Scholar
  34. Garcia-Romera I, Garcia-Garrido JM, Martin J, Fracchia S, Mujica MT, Godeas A, Ocampo JA (1998) Interaction between saprophytic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis 24:235–246Google Scholar
  35. Gerdemann J (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418CrossRefGoogle Scholar
  36. Gerdemann JW (1974) Vesicula-arbuscular mycorrhiza. Academic Press, NYGoogle Scholar
  37. George S, Pillai GR, Pushpakomari R (1999) Influence of biofertilisers on productivity of Guinea grass intercropped in coconut gardens. Indian J Agron 43:622–627Google Scholar
  38. Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizae fungi: getting to the roots of symbiosis. The Plant Cell 8:1871–1883PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  40. Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3–14CrossRefGoogle Scholar
  41. Hage-Ahmed K, Chobot V, Postl W, Voglgruber A, Hadacek F, Steinkellner S (2009) Alteration of plant metabolites and root exudate-mediated interactions by pathogenic and mycorrhizal fungi in tomato. international symposium “Root Research and Applications” (RootRAP), Boku–Vienna, Austria, 2–4 Sept, pp 1–4Google Scholar
  42. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  43. Jaizme-Vega MC, Tenoury P, Pinochet J, Jaumot M (1997) Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseaein banana. Plant Soil 196:27–35CrossRefGoogle Scholar
  44. Jallali BL, Chand H (1987) In: Mahadevan et al (eds) Proceedings of iSI Asian conference on Mycorrhizae at Madras, pp 209–214Google Scholar
  45. Jefwa J, Vanlauwe B, Coyne D, Van Asten P, Gaidashova S, Rurangwa E, Mwashasha M, Elsen A (2010) Benefits and potential use of Arbuscular Mycorrhizal Fungi (AMF) in banana and plantain (Musa spp.) systems in Africa. In: Dubois T et al (eds) Proceedings international conference on Banana & Plantain in Africa, Acta Hort, 879. ISHS, The Hague, pp 479–486Google Scholar
  46. Jeffries P, Barca JM (2012) Arbuscular Mycorrhiza-a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota. Springer, Berlín/Heidelberg, pp 51–75Google Scholar
  47. Johnson D, Leake JR, Read DJ (2006) Role of arbuscular mycorrhizal fungi in carbon and nutrient cycling in grassland. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 129–150CrossRefGoogle Scholar
  48. Jothi G, Babu RS, Rajendren G (2005) Biomanagement of nematodes by mycorrhiza – a review. Agric Rev 26(4):249–260Google Scholar
  49. Kabir Z, Koide RT (2000) The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174CrossRefGoogle Scholar
  50. Karagiannidis N, Bletsos F, Stavropoulos N (2002) Effect of Verticillium wilt (VerticilliumdahliaeKleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and egg plant seedlings. Sci Hortic 94:145–156CrossRefGoogle Scholar
  51. Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10(1):22–29PubMedCrossRefGoogle Scholar
  52. Karthikeyan B, Jaleel CA, Changxing Z, Joe MM, Srimannarayan J, Deiveekasundaram M (2008) The effect of AM fungi and phosphorous level on the biomass yield and ajmalicine production in Catharanthus roseus. Eur Asia J BioSci 2(3):26–33Google Scholar
  53. Kasiamdarim RS, Smithm SE, Smith FA, Scott ES (2002) Influence of the mycorrhizal fungus, Glomus coronatum, and soil phosphorus on infection and disease caused by binucleateRhizoctonia and Rhizoctoniasolani on mung bean (Vigna radiata). Plant Soil 238:235–244CrossRefGoogle Scholar
  54. Kjøller R, Rosendahl S (1996) The Presence of the Arbuscular Mycorrhizal Fungus Glomus intraradices Influences Enzymatic Activities of the Root Pathogen Aphanomyces euteiches in Pea Roots. Mycorrhiza 6(6):487–491Google Scholar
  55. Kobra N, Jalil K, Youbert G (2011) Arbuscular mycorrhizal fungi and biological control of Verticillium wilted cotton plants. Arch Phytopathol Plant Protect 44(10):933–942CrossRefGoogle Scholar
  56. Krishna H, Das B, Attri BL, Grover M, Ahmed N (2010) Suppression of Botryosphaeria canker of apple by arbuscular mycorrhizal fungi. Crop Protect 29:1049–1054CrossRefGoogle Scholar
  57. Krishna KR, Bagyaraj DJ (1983) Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Can J Bot 61:2349–2351CrossRefGoogle Scholar
  58. Lambert DH, Baker DE, Cole H Jr (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper and other elements. Soil Sci Soc Am J 43:976–980CrossRefGoogle Scholar
  59. Larsen J, Bødker L (2001) Interactions between pea root-inhabiting fungi examined using signature fatty acids. New Phytol 149:487–493CrossRefGoogle Scholar
  60. Lekberg Y, Koide RT (2005) Is plant performance limited by an abundance of arbuscular mycorrhizal fungi? a meta-analysis of studies published between 1988–2003. New Phytol 168:189–204PubMedCrossRefGoogle Scholar
  61. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  62. Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn, and Fe bymycorrhizal maize (Zea mays L) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336CrossRefGoogle Scholar
  63. López-Ráez JA, Charnikhova T, Femández I, Bouwrneester H, Pozo MJ (2011) Arbuscular mycorrhizal syrnbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mader P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156CrossRefGoogle Scholar
  65. Manjunath BA, Mohan R, Bagyaraj DJ (1981) Interaction between Beijerinckiamobilis, Aspergillusniger and Glomusfasciculatus and their effects on growth of onion. New Phytol 87:723–727CrossRefGoogle Scholar
  66. Matsubara YI, Hasegawa N, Fukui H (2002) Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jpn Soc Hortic Sci 71:370–374CrossRefGoogle Scholar
  67. Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth–promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 26(2):128–134PubMedCrossRefPubMedCentralGoogle Scholar
  68. McGonigle TP (1988) A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi. Funct Ecol 2:473–478CrossRefGoogle Scholar
  69. Momotaz R, Alam MM, Islam MN, Alam KM, Rahman MZ (2015) Management of the root-knot nematode of tomato by inoculation with Arbuscular Mycorrhizal Fungi. Int J Sustain Crop Prod 10(2):48–54Google Scholar
  70. Morovvat A, Ronaghi A, Zarei M, Emadi M, Heidarianpour MB, Gholami L (2012) Effect of arbuscular mycorrhiza fungi application on distribution of phosphorus forms in rhizosphere soils of sunflower (Helianthus annuus L.). Int J Agric Sci Res Technol 2(2):77–82Google Scholar
  71. Muthukumar T, Udaiyan K, Karthikeyan A, Manian S (1997) Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge (Cyperus rotundus L.). Agric Ecosyst Environ 61:51–58CrossRefGoogle Scholar
  72. Nagesh M, Reddy PP, Kumar MVV, Nagaraju BM (1999) Studies on correlation between Glomus fasciculatum spore density, root colonization and Meloidogyne incognita infection on Lycopersicon esculentum. J Plant Dis Protect 106:82–87Google Scholar
  73. Nedorost L, Pokluda R (2012) Effects of arbuscular Mycorrhizal fungi on tomato yield and nutrient uptake under different fertilization levels. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 60(8):181–186CrossRefGoogle Scholar
  74. Neeraj SK (2011) Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol 47:288–295CrossRefGoogle Scholar
  75. Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EV (2013) Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiol Ecol 85(1):37–50PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ojha S, Chakraborty M, Chatterjee NC (2012) Influence of salicylic acid and Glomusfasciculatumon Fusarialwilt of tomato and brinjal. Arch Phytopathol Plant Protect 45(13):1599–1609CrossRefGoogle Scholar
  77. Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5(10):1108–1116Google Scholar
  78. Othira JO, Omolo JO, Wachira FN, Onek LA (2012) Effectiveness of arbuscular mycorrhizal fungi in protection of maize (Zea mays L.) against witchweed (Striga hermonthica Del Benth) infestation. J Agric Biotechnol Sustain Dev 4(3):37–44CrossRefGoogle Scholar
  79. Ozgonen H, Akgul DS, Erkilic A (2010) The effects of arbuscular mycorrhizal fungi on yield and stem rot caused by SclerotiumrolfsiiSacc. in peanut. Afr J Agric Res 5(2):128–132Google Scholar
  80. Pavkovsky RS, Bethlenlfalvay GJ, Paul EA (1986) Comparisons between P-fertilized and mycorrhizal plants. Crop Sci 26:151–156CrossRefGoogle Scholar
  81. Plenchette C (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant Soil 70:199–209CrossRefGoogle Scholar
  82. Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166(13):1350–1359PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ratti N, Gautam SP, Verma HN (2002) Impact of four Glomus species on the growth, oil content, P content and phosphatase activity of Vetiveria zizanioides. Indian Phytopathology 55(4):434–437Google Scholar
  84. Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363CrossRefGoogle Scholar
  85. Rilling MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE (2005) Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologis 49:251–259CrossRefGoogle Scholar
  86. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53PubMedCrossRefGoogle Scholar
  87. Rivera-Becerril F, Juárez-Vázquez LV, Hernández-Cervantes SC, Acevedo-Sandoval OA, Vela-Correa G, Cruz-Chávez E, Moreno-Espíndola IP, Esquivel-Herrera A, De León-González F (2013) Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza. Arch Environ Contam Toxicol 64(2):219–227PubMedCrossRefGoogle Scholar
  88. Rodriguez R, Vassilev N, Azcon R (1999) Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially-treated sugar beet waste. Appl Soil Ecol 11(1):9–15CrossRefGoogle Scholar
  89. Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effects of various organic compounds growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol 141:517–524CrossRefGoogle Scholar
  90. Read DJ, Koucheki HK, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol 77:641–653Google Scholar
  91. Sankaranarayanan C, Sundarababu R (2009) Reciprocal influence of Arbuscular Mycorrhizal Fungus and root knot nematode and interaction effects on Blackgram. Nematol Medit 37:197–202Google Scholar
  92. Sampo S, Nadia M, Simone C, Urnuberta D, Dominica B, Christina M, Graziella B (2012) Effect of two Am fungi on phytoplsama infection in the model plant Chrysantemum carinatum. Agric Food Sci 21:39–51CrossRefGoogle Scholar
  93. Sbrana C, Giovannetti M (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15:539–545PubMedCrossRefPubMedCentralGoogle Scholar
  94. Schreiner RP (2007) Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl Soil Ecol 36:205–215CrossRefGoogle Scholar
  95. Shinde SK, Shinde BP, Patale SW (2013) The alleviation of salt stress by the activity of AM fungi in growth and productivity of onion (Allium cepa L.) plant. Int J Life Sci Farma Res 3(1):11–15CrossRefGoogle Scholar
  96. Smith SE, Read DJ (2002) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  97. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, AmsterdamGoogle Scholar
  98. Tarafdar JC, Marschner H (1995) Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-phytate. Plant Soil 173:97–102CrossRefGoogle Scholar
  99. Thingstrup I, Rubaek G, Sibbensen E, Jakobsen I (1999) Flax (Linum usitatissimum L.) depends on arbuscular mycorrhizal fungi for growth and P uptake at intermediate but not high soil P levels in the field. Plant Soil 203:37–46CrossRefGoogle Scholar
  100. Thompson JP (1994) Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil overcomes long-fallow disorder of linseed (Linum usitatissium L.) by improving P and Zn uptake. Soil Biol Biochem 26(9):1133–1143CrossRefGoogle Scholar
  101. Torres-Barragán A, Zavale-Tamejia E, Gonzalez-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum) under field conditions. Mycorrhiza 6:253–257CrossRefGoogle Scholar
  102. Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soil-borne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209CrossRefGoogle Scholar
  103. Vaast P, Caswell-Chen EP, Zasoski RJ (1998) Influeences of a root-lesion nematode, Pratylenchus coffeae, and two arbuscular mycorrhizal fungi, Acaulospora mellea and Glomus clarumon coffee (Coffea Arabica L.). Biol Fertil Soils 26:130–135CrossRefGoogle Scholar
  104. Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15(3):261–272CrossRefGoogle Scholar
  105. Vasanthakrishna M, Muthanna MB, Bagyaraj DJ (1994) Succession of vesicular arbuscular mycorrhizal fungi associated with Casuarina equisetifoliaL. Ann For 2:123–126Google Scholar
  106. Vivekanandan M, Fixen PE (1991) Cropping systems effects on Mycorrhizal colonization, early growth, and Phosphorus uptake. Soil Sci Soc Am J 55:136–140CrossRefGoogle Scholar
  107. Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227CrossRefGoogle Scholar
  108. Wright SF (2005) Management of Arbuscular Mycorrhizal Fungi. In: Zobel RW, Wright SF (eds) Roots and soil management: interactions between roots and the soil. American Society of Agronomy, Madison, pp 183–197Google Scholar
  109. Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc Am J 63(6):1825–1829CrossRefGoogle Scholar
  110. Wu QS, Zou YN, Xia RX, Wang MY (2007) Five Glomus species affect water relations of Citrus tangerine during drought stress. Bot Stud 48:147–154Google Scholar
  111. Ziedan E, Sayed EI, Mostafa M, Sahab A (2011) Application of mycorrhizae for controlling root diseases of sesame. J Plant Protect Res 51(4):355–361CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • U. N. Bhale
    • 1
  • S. A. Bansode
    • 1
  • Simranjeet Singh
    • 2
  1. 1.Department of BotanyArts, Science and Commerce CollegeNaldurg, Tq. Tuljapur, OsmanabadIndia
  2. 2.Department of BiotechnologyLovely Professional UniversityPhagwaraIndia

Personalised recommendations