Molecular Status of Conogethes spp.: An Overview

  • Vasudev Kammar
  • P. R. Shashank
  • A. T. Rani
  • V. Selvanarayanan


Conogethes sp. is a large taxon that infests more than 120 wild and cultivated host plants across the world. So far, several scientists have studied this group of moth pests to appreciate the genetic variability in the genus; however, owing the complexity at genetic and ecological levels, it has become difficult to understand this group of moths. Till date 24 species have been deposited in the Barcode of Life Data (BOLD) system. In order to study the molecular diversity of Conogethes, multiple markers have been used world over. However, several researchers have revealed that combined analysis of molecular markers and morphological data with field observations may constitute powerful evidence for proper identification of pest species in this problematic taxa. Precise identification would then be utilized for developing realistic practices for the management of Conogethes sp. in diversified cultivated ecosystems.


Conogethes sp. Genetic variability Molecular marker Morphological data 



Authors are thankful to the BOLD website for the contents of Table 2.1 and to the authorities of the University of Agricultural Sciences, GKVK, Bengaluru, for encouragement and facilities.


  1. Alagar M, Rachana KE, Keshava Bhat S, Rahman S, Rajesh MK (2013) Biology, damage potential and molecular identification of Conogethes punctiferalis Guenee in cocoa (Theobroma cacao Linn.). J Plant Crop 41(3):350–356Google Scholar
  2. Armstrong K (2010) DNA barcoding: a new module in New Zealand’s plant bio-security diagnostic toolbox. Bull OEPP/EPPO 40:91–100CrossRefGoogle Scholar
  3. Azam KM, Ali MH (1965) Morphology of larva of Dichocrocis punctiferalis Guen., the castor shoot and capsule borer with special reference to chaetotaxy (Lepidoptera: Pyralidae). Indian J Entomol 27(4):423–431Google Scholar
  4. Bickford D, Lohman DJ, Sodhi NS, Pkl NG, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155CrossRefGoogle Scholar
  5. Bold (2012) International barcode of life, Lepidoptera barcode of life. [Cited 11 May 2012] Available from URL:
  6. Cande J, Prud’homme B, Gompel N (2013) Smells like evolution: the role of chemoreceptor evolution in behavioural change. Curr Opin Neurobiol 23:152–158CrossRefGoogle Scholar
  7. Chakravarthy AK, Honda H, Thyagaraj NE (1991) Comparison of containers for larval rearing in stalk and fruit feeding type of Conogethes punctiferalis (Guen.) Lepidoptera: Pyralidae. Placrosym IX:127–131Google Scholar
  8. Chakravarthy AK, Vasudevkammar, Kumar KP (2015) Monograph on shoot and fruit borer, Conogethes punctiferails and allied species. Consortia Research Platform on Borers, ICAR- Indian Institute of Horticultural Research (IIHR), BengaluruGoogle Scholar
  9. Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PDN (2006) DNA bar-coding of neotropical bats: species identification and discovery within Guyana. Mol Ecol Notes 7:184–190CrossRefGoogle Scholar
  10. Dres M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond Ser B Biol Sci 357:471–492CrossRefGoogle Scholar
  11. Fan J, Francis F, Liu Y, Chen JL, Cheng DF (2011) An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res 10:3056–3069CrossRefGoogle Scholar
  12. Ganev S, Braithwaite M (2003) Resource requirements for national active surveillance programmes of high impact exotic pests in New Zealand. N Z Plant Protect 56:10–15Google Scholar
  13. Ge X, Zhang T, Wang Z, He K, Bai S (2016) Identification of putative chemosensory receptor genes from yellow peach moth Conogethes punctiferalis (Guenée) antennae transcriptome. Sci Rep:1–13.
  14. Hampson GF (1896) The fauna of British India including Ceylon and Burma (Moths). Taylor and Francis, London, p 594Google Scholar
  15. Hebert PDN, Cywinska A, Ball SL, Dewaardjr (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  16. Honda H (2013) Bio systematics of Japanese Conogethes sp. With special reference to host plant preference and reproductive isolation. In: Chakravarthy AK, Ashok Kumar CT, Varghese A, Thyagaraj NE (eds) New horizons in insect science. Abstracts ICIS-2013. Springer, Bangalore/New Delhi, p 136Google Scholar
  17. Hubert N, Hanner R, Holm E, Mandrak NE, Taylor E, Burridge M, Watkinson D, Dumont P, Curry A, Bentzen P, Zhang J (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3:e2490CrossRefGoogle Scholar
  18. Inoue H, Yamanaka H (2006) Redescription of Conogethes punctiferalis (Guenée) and description of two new closely allied species from Eastern Palaearctic and oriental regions (Pyralidae: Pyraustinae). Tinea 19(2):80–91Google Scholar
  19. Jackson JK, Resh VH (1998) Morphologically cryptic species confound ecological studies of the caddisfly genus Gumaga (Trichoptera: Sericostomatidae) in Northern California. Aquat Insects 20:69–84CrossRefGoogle Scholar
  20. Jalali SK, Ojha R, Venkatesan T (2015) DNA barcoding for identification of agriculturally important insects. In: Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 13–22Google Scholar
  21. Jia X-J et al (2016) Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Sci Rep 6:29067. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Koizumi K (1960) Two forms of Dichocrocis punctiferalis (Guenee) presumably representing separate species. The main purport of a lecture the 20th annual meeting of the Entomological Society of Japan, pp 8–9Google Scholar
  23. Kristensen NP (1999) Lepidoptera, moths and butterflies. In: Volume 1: |Evolution, systematics, and biogeography (Handbuch der Zoologie [founded by Willy Kukenthal; ed.: Fischer, M.] Band 4, Teilband 35). Walter de Gruyter, Berlin, pp 217–232Google Scholar
  24. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391CrossRefGoogle Scholar
  25. Maes KVN (1998) Pyraloidea: crambidae, pyralidae pp. 87–98, 426–435. In: Polaszek A (ed) African cereal stem borers: economic importance, taxonomy, natural enemies and control. CAB International, Oxon, p 74Google Scholar
  26. Mathew G, Menon MGR (1984) The pyralid fauna (Lepidoptera: Pyralidae) of Kerala (India). J Entomol Res 8(1):5–13Google Scholar
  27. Meyrick E (1884) On the classification of the Australian Pyralidina. Trans R Entomol Soc Lond 32(3):277–350Google Scholar
  28. Munroe E (1989) Changes in classification and names of Hawaiian Pyralidae since the publication of Insects of Hawaii, vol 8, by Zimmerman EC (1958). Bishop Mus Occas Pap 29:199–212Google Scholar
  29. Munroe E, Solis MA (1999) Pyraloidea, pp 233–256. In: Kristensen N (ed) Lepidoptera, moths and butterflies, Vol. 1, Arthropoda, Insect, Vol. 4, Part 35. Handbook of Zoology. Walter de Gruyter & Co., Berlin, 491 pGoogle Scholar
  30. Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963CrossRefGoogle Scholar
  31. Pena JE, Nadel H, Pereira MB, Smith D (2002) Pollinators and pests of Annona Sp. In: Pena J, Sharp J, Wysoki (eds) Tropical fruit pests and pollinators: biology, economic importance, natural enemies and control. CABI Publication, Wallingford/New York, p 208CrossRefGoogle Scholar
  32. Pereira F, Carneiro J, Amorim A (2008) Identification of species with DNA-based technology: current progress and challenges. Recent Pat DNA Gene Seq 2:187–200CrossRefGoogle Scholar
  33. Pilgrim EM, Roush SA, Krane DE (2002) Combining DNA sequences and morphology in systematics: testing the validity of the dragonfly species Cordulegaster bilineata. Heredity 89:184–190CrossRefGoogle Scholar
  34. Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 100:14537–14542CrossRefGoogle Scholar
  35. Shaffer M, Nielsen ES, Horak M (1996) Pyraloidea. In: Nielsen ES, Edwards ED, Rangsi TV, Checklist of the Lepidoptera of Australia. Monograph of Australia Lepidoptera 4:164–199Google Scholar
  36. Shashank PR (2012) Biosystematics and pheromone components of Conogethes punctiferalis (Guénee) (Lepidoptera: Crambidae) with special reference to populations infesting Castor (Ricinus communis L.) and cardamom (Elettaria cardamomum Maton), Ph.D thesis, UAS, GKVK, Bangalore-65Google Scholar
  37. Shashank PR, Chakravarthy AK, Raju BR, Bhanu KRM (2014a) DNA barcoding reveals the occurrence of cryptic species in host-associated population of Conogethes punctiferalis (Lepidoptera: Crambidae). Appl Entomol Zool 49:283–295CrossRefGoogle Scholar
  38. Shashank PR, Chakravarthy AK, Chandrashekharaiah R, KRM B (2014b) Behavioural studies on shoot and fruit borer, Conogethes punctiferalis, Guenée, (Crambidae: Lepidoptera) host-associated populations reveal occurrence of cryptic species. Entomol Generalis 35(2):103–115CrossRefGoogle Scholar
  39. Shashank PR, Doddabasappa B, Kammar V, Chakravarthy AK, Honda H (2015) Molecular characterization and management of shoot and fruit borer Conogethes punctiferalis Guenee (Crambidae: Lepidoptera) populations infesting cardamom, castor and other hosts. In: Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 207–227Google Scholar
  40. Shashank PR, Kammar V, Mally R, Chakravarthy AK (2018) A new Indian species of shoot and capsule borer of the genus Conogethes (Lepidoptera: Crambidae), feeding on cardamom. Zootaxa 4374(2):215–234CrossRefGoogle Scholar
  41. Smith MA, Fisher BL (2009) Invasion, DNA barcodes, and rapid biodiversity assessment using the ants of Mauritius. Front Zool 6:31CrossRefGoogle Scholar
  42. Smith MA, Fisher BL, Hebert PDN (2005) DNA barcoding for effective biodiversity assessment of a hyper diverse arthropod group: the ants of Madagascar. Philos Trans R Soc B Biol Sci 360:1825–1834CrossRefGoogle Scholar
  43. Stephenson BP, Gill GSC, Randall JL, Wilson JA (2003) Biosecurity approaches to surveillance and response for new plant pest species. N Z Plant Protect 56:5–9Google Scholar
  44. Vasudev K (2013) Molecular diversity of Conogethes sp. Guenèe, (Lepidoptera: Crambidae) infesting castor and cardamom. M.Sc. dissertation, University of Agricultural Sciences, GKVK, Bangalore, pp 55–66Google Scholar
  45. Vasudev K, Chakravarthy AK, Ashokan R (2016) Molecular evidence for divergence in the shoot and fruit borer, Conogethes sp. (Lepidoptera: Crambidae) infesting select host-plants in India. Mysore J Agric Sci 50(2):245–249Google Scholar
  46. Wang J, Zhang T, Wang Z, HE K, Liu Y, Li J (2014) Molecular taxonomy of Conogethes punctiferalis and Conogethes pinicolalis (Lepidoptera: Crambidae) based on mitochondrial DNA sequences. J Integr Agric 13(9):1982–1989CrossRefGoogle Scholar
  47. Waugh J (2007) DNA bar-coding in animal species: progress, potential and pitfalls. BioEssays 29:188–197CrossRefGoogle Scholar
  48. Xing Ge, Tiantao Zhang, Zhenying Wang, Kanglai He & Shuxiong Bai, 2016, Identification of putative chemosensory receptor genes from yellow peach moth Conogethes punctiferalis (Guenée) antennae transcriptome. Scientificreports, pp.1–13. Scholar
  49. Zhang Y (2010) Genetic diversity of Conogethes punctiferalis (Guenée) (Lepidoptera: Crambidae) populations from different geographic regions in China. Acta Entomol Sin 53(9):1022–1029Google Scholar
  50. Zhou X, Adamowicz SJ, Jacobus LM, DeWalt RE, Hebert PDN (2009) Towards a comprehensive barcode library for arctic life – Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada. Front Zool 6:30CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vasudev Kammar
    • 1
  • P. R. Shashank
    • 2
  • A. T. Rani
    • 3
  • V. Selvanarayanan
    • 4
  1. 1.Department of Food and Public Distribution, Ministry of Consumer Affairs and Food and Public DistributionGovernment of IndiaNew DelhiIndia
  2. 2.Insect Taxonomy Laboratory, Division of EntomologyICAR-Indian Agricultural Research InstituteNew DelhiIndia
  3. 3.Division of Crop ProtectionICAR-Indian Institute of Vegetable Research (IIVR)VaranasiIndia
  4. 4.Department of Entomology, Faculty of AgricultureAnnamalai UniversityChidambaramIndia

Personalised recommendations