Skip to main content

Issues on Design Shear Strength of RC Deep Beams

  • Conference paper
  • First Online:
Recent Advances in Structural Engineering, Volume 1

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 11))

  • 1737 Accesses

Abstract

In this paper, a simple analytical expression is proposed for limiting the design shear strength of RC deep beams, by considering following facts. The maximum shear strength equation of ACI code is same for both concentrated and uniformly distributed loading cases. The effect of \( \frac{a}{d} \) needs to be accounted for properly. Second, the effect of size, tension reinforcement and limitations on compressive strength of concrete result in either overestimation or high underestimation of shear strength of beams with a/d ratio ranging between 1.0 and 2.0. The proposed equation is validated with the test data of 413 deep beams segregated from literature and design provisions of various codes. The proposed model overestimates only, a meagre fraction, 5% of the collected data, whereas the ACI 318-14 code equation overestimates 18.4% of collected data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kani, G. N. J. (1967). How safe are our large reinforced concrete beams? ACI Journal Procedings, 64(6), 128–141.

    Google Scholar 

  2. ACI Committee 318-95. (1995). Building code requirement of reinforced concrete. Farmington Hill, MI: American concrete Institute.

    Google Scholar 

  3. ACI Committee 318-08. (2008). Building code requirements for structural concrete. Farmington Hill, MI: American concrete Institute.

    Google Scholar 

  4. ACI Committee 318-14. (2014). Building code requirements for structural concrete. Farmington Hill, MI: American concrete Institute.

    Google Scholar 

  5. IS 456:2000. (2000). Indian standard plain and reinforced concrete code of practice, Fourth Revision. New Delhi: Bureau of Indian Standards.

    Google Scholar 

  6. ACI Committee 318–11. (2011). Building code requirements for structural concrete. Farmington Hill, MI: American Concrete Institute.

    Google Scholar 

  7. British Standards Institution (BSI) BS 8110-1. (1997). Structural use of concrete—Part 1: Code of practice for design and construction. London, UK: BSI 1997.

    Google Scholar 

  8. Hong Kong Buildings Department (HKBD). (2013). Code of practice for structural use of concrete 2013.

    Google Scholar 

  9. Clark, A. P. (1951). Diagonal tension in reinforced concrete beams. ACI Journal Proceedings, 48(10), 145–156.

    Google Scholar 

  10. Moody, K. G., Viest, I. M., Elstner, R. C., & Hognestad, E. (1954). Shear strength of reinforced concrete beams part 1—Tests of simple beams. ACI Journal Proceedings, 51(12), 317–332.

    Google Scholar 

  11. Morrow, J., & Viest, I. M. (1957). Shear strength of reinforced concrete frame members without web reinforcement. ACI Journal Proceedings, 53(3), 833–869.

    Google Scholar 

  12. Leonhardt, F., & Walther, R. (1964). “The Stuttgart Shear Tests 1961,” A translation of the articles that appeared in Beton und Stahlbetonbau, Vol. 56(12), 1961 and Vol. 57 2,3,6,7 and 8, 1962. Wexham Springs, United Kingdom: Cement and Concrete Association Library Translation No. 111, 134 pp.

    Google Scholar 

  13. Mathey, R. G., & Watstein, D. (1963). Shear strength of beams without web reinforcement containing deformed bars of different yield strengths. ACI Journal Proceedings, 60(2), 183–208.

    Google Scholar 

  14. Kani, M. W., Huggins, M. W., & Wittkopp, R. R. (1979). Kani on shear in reinforced concrete (p. 225). Toronto, Canada: University of Toronto Press.

    Google Scholar 

  15. Lee, D. (1982). An experimental investigation in the effects of detailing on the shear behaviour of deep beams. (Master thesis), Department of Civil Engineering, University of Toronto, 138 pp.

    Google Scholar 

  16. Smith, K. N., & Vantsiotis, A. S. (1982). Shear strength of deep beams. ACI Journal Proceedings, 79(3), 201–213.

    Google Scholar 

  17. Rogowsky, D. M., & MacGregor, J. G. (1986). Tests of reinforced concrete deep beams. ACI Journal Proceedings, 83(4), 614–623.

    Google Scholar 

  18. Walraven, J., & Lehwalter, N. (1994). Size effects in short beams loaded in shear. ACI Structural Journal, 91(5), 585–593.

    Google Scholar 

  19. Tan, K. H., Kong, F. K., Teng, S., & Guan, L. W. (1995). High-strength concrete deep beams with effective span and shear span variations. ACI Structural Journal, 92(4), 1–11.

    Google Scholar 

  20. Foster, S. J., & Gilbert, R. I. (1998). Experimental studies on high-strength concrete deep beams. ACI Structural Journal, 95(4), 382–390.

    Google Scholar 

  21. Tan, K. H., & Lu, H. Y. (1999). Shear behavior of large reinforced concrete deep beams and code comparisons. ACI Structural Journal, 96(5), 836–846.

    Google Scholar 

  22. Yang, K.-H., Chung, H.-S., Lee, E.-T., & Eun, H.-C. (2003). Shear characteristics of high-strength concrete deep beams without shear reinforcements. Engineering Structures, 25(10), 1343–1352.

    Article  Google Scholar 

  23. Tanimura, Y., & Sato, T. (2005). Evaluation of shear strength of deep beams with stirrups. Quarterly Report of RTRI, 46(1), 53–58.

    Article  Google Scholar 

  24. Salamy, M. R., Kobayashi, H., & Unjoh, S. (2005). Experimental and analytical study on RC deep beams. Asian Journal of Civil Engineering (AJCE), 6(5), 409–422.

    Google Scholar 

  25. Zhang, N., & Tan, K.-H. (2007). Size effect in RC deep beams: Experimental investigation and STM verification. Engineering Structures, 29(12), 3241–3254.

    Article  Google Scholar 

  26. Garay, J.D., & Lubell, A.S. (2008). Behavior of concrete deep beams with high strength reinforcement. 2008 Structures Congress—Crossing Borders, Vancouver, Canada, 10 p.

    Google Scholar 

  27. Zhang, N., Tan, K.-H., & Leong, C.-L. (2009). Single-span deep beams subjected to unsymmetrical loads. ASCE Journal of Structural Engineering, 135(3), 239–252.

    Article  Google Scholar 

  28. Breña, S. F., & Roy, N. C. (2009). Evaluation of load transfer and strut strength of deep beams with short longitudinal bar anchorages. ACI Structural Journal, 106(5), 678–689.

    Google Scholar 

  29. Birrcher, D., Tuchscherer, R., Huizinga, M., Bayrak, O., Wood, S., & Jirsa, J. (2009). Strength and serviceability design of reinforced concrete deep beams, Report no. FHWA/TX-09/0-5253-1. Center for Transportation Research, The University of Texas at Austin.

    Google Scholar 

  30. Sahoo, D. K., Sagi, M. S. V., Singh, B., & Bhargava, B. (2010). Effect of detailing of web reinforcement on the behaviour of bottle-shaped struts. Journal of Advanced Concrete Technology, 8(3), 303–314.

    Article  Google Scholar 

  31. Senturk, A. E., & Higgins, C. (2010). Evaluation of reinforced concrete deck girder bridge bent caps with 1950s vintage details: Laboratory tests. ACI Structural Journal, 107, 534–543.

    Google Scholar 

  32. Zhang, N., & Tan, K. H. (2010). Effects of support settlement on continuous deep beams and STM modelling. Engineering Structures, 32(2), 361–372.

    Article  MathSciNet  Google Scholar 

  33. Mihaylov, B. I., Bentz, E. C., & Collins, M. P. (2010). Behavior of large deep beam subjected to monotonic and reversed cyclic shear. ACI Structural Journal, 107(6), 726–734.

    Google Scholar 

  34. Lu, W. Y., Lin, I. J., & Yu, H. W. (2013). Shear strength of reinforced concrete deep beams. ACI Structural Journal, 110(4), 671–680.

    Google Scholar 

  35. El-Sayed, A. K., & Shuraim, A. B. (2015). Size effect on shear resistance of high strength concrete deep beams. Materials and Structures, 49(5), 1871–1882.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Appa Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raj, J.L., Rao, G.A. (2019). Issues on Design Shear Strength of RC Deep Beams. In: Rao, A., Ramanjaneyulu, K. (eds) Recent Advances in Structural Engineering, Volume 1. Lecture Notes in Civil Engineering , vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-13-0362-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0362-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0361-6

  • Online ISBN: 978-981-13-0362-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics