Skip to main content

In Silico Biochemical Pathways for Bacterial Metabolite Synthesis

  • Chapter
  • First Online:
In Silico Approach for Sustainable Agriculture

Abstract

The search of an alternative is always a major concern of human for sustaining life effectively. The green flora described by the agriculture is the source of many such life attaining processes and products that are essential for human population. In addition to this, the constantly growing number of Homo sapiens has to be fed with increase yield of agriculture products. To meet the demands of growing population and relieve the pressure of yield, the use of fertilizers comes into action, while the constant use of chemical fertilizers has deteriorated the heath of soil, environment, and human collectively calling “phytobiome.” Thus, the urge of finding alternatives to replace the toxic chemical fertilizers has given a way to search exhaustively the naturally occurring microbiomes for their beneficial effect on the agri-flora. Moreover, the available advancements in the computational and system-level approaches with omics data have provided us the genomes and also genome-level metabolic models for many beneficial/effective bacteria. The naturally synthesized metabolites (primary and secondary) can be easily exploited nowadays for any intended use in the fields as inoculants or bio fertilizers. In addition the available kinetic model has paved the way to commercially synthesize desired metabolite (through amendments in pathway either genetic or environmental) on large scale as biofuels, etc. Despite of these advances, several challenges still coexist with approaches that have to be exploited in the near future. Some of the challenges have been discussed in present work with a brief account of in silico kinetic models available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science (Taylor & Francis Group), New York

    Google Scholar 

  • Ao P, Lee LW, Lidstrom M, Yin L, Zhu XM (2008) Towards kinetic modeling of global metabolic networks with incomplete experimental input on kinetic parameters. arXiv preprint arXiv:0808.0220

    Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  Google Scholar 

  • Babalola OO, Sanni AI, Odhiambo GD, Torto B (2007) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23(6):747–752

    Article  Google Scholar 

  • Blazeck J, Alper H (2010) Systems metabolic engineering: genome-scale models and beyond. Biotechnol J 5(7):647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns RG (2010) Albert Rovira and a half-century of rhizosphere research. In: Proceedings of the Rovira rhizosphere symposium, p 1

    Google Scholar 

  • Chance B (1943) The kinetics of the enzyme substrate compound of peroxidase. J Biol Chem 151(2):553–577

    CAS  Google Scholar 

  • Chassagnole C, Raïs B, Quentin E, Fell DA, Mazat JP (2001) An integrated study of threonine pathway enzyme kinetics in escherichia coli. Biochem J 356(Pt 2):415–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassagnole C, Noisommit Rizzi N, Schmid JW, Mauch K, Reuss M (2002) Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 79(1):53–73

    Article  CAS  PubMed  Google Scholar 

  • Csete M, Doyle J (2004) Bow ties, metabolism and disease. Trends Biotechnol 22(9):446–450

    Article  CAS  PubMed  Google Scholar 

  • Dhar P, Meng TC, Somani S, Ye L, Sairam A, Chitre M, Hao Z, Sakharkar K (2004) Cellware-a multi-algorithmic software for computational systems biology. Bioinformatics 20(8):1319–1321

    Article  CAS  PubMed  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A Rev Agron Sustain Dev 32(1):227–243

    Article  Google Scholar 

  • Egamberdieva D (2008) Plant growth promoting properties of rhizobacteria isolated from wheat and pea grown in loamy sand soil. Turk J Biol 32(1):9–15

    Google Scholar 

  • ElMansi EMT, Dawson GC, Bryce CFA (1994) Steady-state modelling of metabolic flux between the tricarboxylic cycle and the glyoxylate bypass in Escherichia coli. CABIOS (now Bioinformatics) 10(3):295–299

    Article  CAS  Google Scholar 

  • Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H (2008) Cell designer 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96(8):1254–1265

    Article  Google Scholar 

  • Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized saccharomyces cerevisiae. Enzym Microb Technol 12(3):162–172

    Article  CAS  Google Scholar 

  • Higa T (1991) Effective microorganisms: a biotechnology for mankind. In: Parr JF, Hornick SB, Whitman CE (eds) Proceedings of the first international conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, DC, pp 8–14

    Google Scholar 

  • Higa T (1994) Effective microorganisms: a new dimension for nature farming. In: Parr JR, Hornick SB, Simpson ME (eds) Proceedings of the second international conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, DC, pp 20–22

    Google Scholar 

  • Higa T, Wididana GA (1991a) The concept and theories of effective microorganisms. In: Parr, Hornick SB, Whitman CE (eds) Proceedings of the first international conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, DC, pp 118–124

    Google Scholar 

  • Higa T, Wididana GA (1991b) Changes in the soil microflora induced by effective microorganisms. In: Parr JF, Hornick SB, Whitman CE (eds) Proceedings of the first international conference on Kyusei Nature Farming. U.S. Department of Agriculture, Washington, DC, pp 153–162

    Google Scholar 

  • Hoefnagel MHN et al (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148(Pt 4):1003–1013

    Article  CAS  PubMed  Google Scholar 

  • Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI-a complex pathway simulator. Bioinformatics 22(24):3067–3074

    Article  CAS  PubMed  Google Scholar 

  • Hynne F, Danø S, Sørensen PG (2001) Fullscale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 94:121–163

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Robert M, Nakayama Y, Kanai A, Tomita M (2004) Toward large scale modeling of the microbial cell for computer simulation. J Biotechnol 113:281–294

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi N, Palsson BO (2008) Formulating genome scale kinetic models in the postgenome era. Mol Syst Biol 4:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaymak HC, Guvenc I, Yarali F, Donmez MF (2009) The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric For 33(2):173–179

    CAS  Google Scholar 

  • Klipp E et al (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975–982

    Article  CAS  PubMed  Google Scholar 

  • Knudsen M, Sondergaard D, Tofting-Olesen C, Hansen FT, Brodersen DE, Pedersen CN (2015) Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv600

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Zeng AP (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19(2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Morgan JAW, Whipps JM (2000) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: The rhizosphere: biochemistry and organic substance at the soil-plant interface: biochemistry and organic substance at the soil-plant interface, p 373

    Google Scholar 

  • Parr JF, Hornick SB, Kaufman DD (1994) Use of microbial inoculants and organic fertilizers in agricultural production. In: Proceedings of the international seminar on the use of microbial and organic fertilizers in agricultural production. Published by the Food and Fertilizer Technology Center, Taipei, Taiwan

    Google Scholar 

  • Phytobiomes: A Roadmap for Research and Translation (2016) American Phytopathological Society, St. Paul. www.phytobiomes.org/roadmap

  • Rizzi M et al (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: Ii. Mathematical model. Biotechnol Bioeng 55:592–608

    Article  CAS  PubMed  Google Scholar 

  • Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the systems biology workbench and BioSPICE integration. Omics A J Integr Biol 7(4):355–372

    Article  CAS  Google Scholar 

  • Schallau K, Junker BH (2010) Simulating plant metabolic pathways with enzyme-kinetic models. Plant Physiol 152(4):1763–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H, Jirstrand M (2006) Systems biology toolbox for matlab: a computational platform for research in systems biology. Bioinformatics 22(4):514–515

    Article  CAS  PubMed  Google Scholar 

  • Selkov EE (1968) Self oscillations in glycolysis. Eur J Biochem 4:79–86

    Article  CAS  Google Scholar 

  • Slepchenko BM, Schaff JC, Macara I, Loew LM (2003) Quantitative cell biology with the virtual cell. Trends Cell Biol 13(11):570–577

    Article  CAS  PubMed  Google Scholar 

  • Teusink B et al (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267(17):5313–5329

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA 3rd (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics (Oxford, England) 15(1):72–84

    Article  CAS  Google Scholar 

  • Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1(2):128–140

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 1:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiechert W, Takors R (2004) Validation of metabolic models: concepts, tools, and problems. In: Kholodenko BN, Westerhoff HV (eds) Metabolic engineering in the post genomic era. Horizon Bioscience, UK, pp 277–320

    Google Scholar 

  • Wolf J, Passarge J, Somsen OJG, Snoep JL, Heinrich R, Westerhoff HV (2000) Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys J 78:1145–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright BE, Albe KR (1994) Carbohydrate metabolism in Dictyostelium discoideum: I. model construction. J Theor Biol 169(3):231–241

    Article  CAS  PubMed  Google Scholar 

  • Wright J, Wagner A (2008) The systems biology research tool: evolvable open source software. BMC Syst Biol 2:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright B, Simon W, Walsh T (1968) A kinetic model of metabolism essential to differentiation in Dictyostelium discoideum. Proc Natl Acad Sci 60:644–651

    Article  CAS  PubMed  Google Scholar 

  • Wright BE, Butler MH, Albe KR (1992) Systems analysis of the tricarboxylic acid cycle in dictyostelium discoideum. i. The basis for model construction. J Biol Chem 267(5):3101–3105

    PubMed  CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank all the authors for helpful discussions and for preparation of figures. SA is supported by ICMR-SRF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahnawaz Ali or Romana Ishrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M., Ali, S., Ishrat, R. (2018). In Silico Biochemical Pathways for Bacterial Metabolite Synthesis. In: Choudhary, D., Kumar, M., Prasad, R., Kumar, V. (eds) In Silico Approach for Sustainable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-0347-0_14

Download citation

Publish with us

Policies and ethics