Use of Acidophilic or Acidotolerant Actinobacteria for Sustainable Agricultural Production in Acidic Soils

  • K. Tamreihao
  • Nimaichand Salam
  • Debananda S. Ningthoujam
Part of the Microorganisms for Sustainability book series (MICRO, volume 8)


The quest for increasing agricultural production for the burgeoning human population had been effective with the use of nitrogen-based fertilizers. However, its prolong use and occurrence of acid rain resulted in dropping the soil pH below 5.0, whose environmental conditions considerably decreased the beneficial effects of soil neutrophilic bacteria while increasing the abundance of pathogenic fungi. Furthermore, the use of pesticide and synthetic fertilizers had adverse effect on human health and environment. An alternative method will therefore rely on minor groups of bacteria that can sustain its growth under extreme condition. And particularly for designing products to be applied in acidic soil, acidophilic and/or acidotolerant Actinobacteria having antifungal and/or plant growth-promoting activities had tremendous potential for developments as novel biocontrol and/or biofertilizer products. As Actinobacteria can survive under many adverse environment conditions by forming spores, they can be promising bio-agents for sustainable agricultural production. Actinobacteria may help in the degradation of organic matter into humus and release of nitrogen, carbon, and ammonia, in turn supplying the nutrients to agricultural crops in acidic soil. Release of ammonia due to decomposition of chitin by chitinase-producing Actinobacteria may raise the pH of soils, paving a way for other neutrophilic plant growth-promoting bacteria.


Actinobacteria Acidophilic Acidotolerant Biocontrol Biofertilizer Streptomyces Agricultural crops 



Authors acknowledge the grant from the Department of Biotechnology (DBT), Government of India, given to the Advanced Level State Biotech Hub (BT/04/NE/2009). KT thanks Phungmila Vashum for critical review and proofreading.


  1. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80:1–43CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhat JM, Narayanan MS (1996) Antifungal activity (in vitro) of certain polyene macrolide antibiotics against various plant pathogens. Hindustan Antibiot Bull 38:32–36PubMedGoogle Scholar
  3. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350CrossRefGoogle Scholar
  4. Boukaew S, Plubrukam A, Prasertsan P (2013) Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. Biol Control 58:471–482Google Scholar
  5. Brzezinska MS, Jankiewicz U, Walczak M (2013) Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeterior Biodegrad 201:104–110CrossRefGoogle Scholar
  6. Bull AT (2011) Actinobacteria of the extremobiosphere. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer Verlag, Tokyo, pp 1203–1240CrossRefGoogle Scholar
  7. Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668PubMedPubMedCentralGoogle Scholar
  8. Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–713CrossRefPubMedGoogle Scholar
  9. Cho S-H, Han J-H, Ko H-Y, Kim SB (2008) Streptacidiphilus anmyonensis sp. nov., Streptacidiphilus rugosus sp. nov. and Streptacidiphilus melanogenes sp. nov., acidophilic actinobacteria isolated from Pinus soils. Int J Syst Evol Microbiol 58:1566–1570CrossRefGoogle Scholar
  10. Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10. CrossRefPubMedGoogle Scholar
  11. Corke CT, Chase FE (1964) Comparative studies of actinomycetes populations in acid podzolic and neutral mull forest soil. Proc Soil Sci Am 28:68–69CrossRefGoogle Scholar
  12. Crawford DL, Pometto AL III, Crawford RL (1983) Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl Environ Microbiol 45:898–904PubMedPubMedCentralGoogle Scholar
  13. de Jesus Sousa JA, Olivares FL (2016) Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem Biol Technol Agric 3:24. CrossRefGoogle Scholar
  14. de Weger LA, van der Bij AJ, Dekkers LC, Simons M, Wijffelman CA, Lugtenberg BJJ (1995) Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228CrossRefGoogle Scholar
  15. Dimpka C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophore produced by Streptomyces acidiscbies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172CrossRefGoogle Scholar
  16. FAO (2000) Bridging the gap in rice production. (17/6/2008)
  17. Franco-Correa M, Quintana A, Duque C, Saurez C, Rodríguez MX, Barea J-M (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217CrossRefGoogle Scholar
  18. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818CrossRefGoogle Scholar
  19. Goodfellow M, O’Donnell AG (1989) Search and discovery of industrially significant actinomycetes. In: Baumberg S, Hunter IS, Rhodes PM (eds) Microbial products: new approaches, Society for General Microbiology Symposium No. 44. Cambridge University Press, Cambridge, pp 343–383Google Scholar
  20. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 29:319–322Google Scholar
  21. Golinska P, Ahmed L, Wang D, Goodfellow M (2013) Streptacidiphilus durhamensis sp. nov., isolated from a spruce forest soil. Antonia van Leeuwenhoek 104:199–206CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, Ruan J, Huang Y (2015) Red soils harbour diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol 81:3086–3103CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hagedorn C (1976) Influence of soil acidity on Streptomyces population inhabiting forest soils. Appl Environ Microbiol 32:368–375PubMedPubMedCentralGoogle Scholar
  24. Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008a) Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575CrossRefGoogle Scholar
  25. Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilising actinomycetes in a P-deficient soil under greenhouse conditions. Appl Soil Ecol 40:510–517CrossRefGoogle Scholar
  26. Haney RL, Senseman SA, Hons FM, Zuberer DA (2000) Effect of glyphosate on soil microbial activity and biomass. Weed Sci 48:89–93CrossRefGoogle Scholar
  27. Huang Y, Cui Q, Wang L, Rodriguez C, Quintana E, Goodfellow M, Liu Z (2004) Streptacidiphilus jiangxiensis sp. nov., a novel actinomycete isolated from acidic rhizosphere soil in China. Antonie Van Leeuwenhoek 86:159–165CrossRefPubMedGoogle Scholar
  28. Ilic SB, Konstantinovic SS, Todorovic ZB, Lazic ML, Veljkovic VB, Jokovic N, Radovanovic BC (2007) Characterization and antimicrobial activity of the bioactive metabolites in Streptomycete isolates. Microbiology 76:421–428CrossRefGoogle Scholar
  29. Kanbe K, Okamura M, Hattori S, Naganawa H, Hamada M, Okami Y, Takeuchi T (1993) Thienodolin, a new plant growth-regulating substance produced by a Streptomycete strain: I. Taxonomy and fermentation of the producing strain, and the isolation and characterization of thienodolin. Biosci Biotech Biochem 57:632–635CrossRefGoogle Scholar
  30. Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81CrossRefPubMedGoogle Scholar
  31. Khamna S, Yokota A, Peberdy J, Lumyong S (2010) Indole-3-acetic acid production by Streptomyces sp. isolated from Thai medicinal rhizosphere soils. Eur Asian J Bio Sci 4:23–32CrossRefGoogle Scholar
  32. Khan MR, Williams ST (1975) Studies on the ecology of actinomycetes in soil: VIII. Distribution and characteristics of acidophilic actinomycetes. Soil Biol Biochem 7:345–348CrossRefGoogle Scholar
  33. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43CrossRefGoogle Scholar
  34. Kim BS, Moon SS, Hwang BK (2000) Structure elucidation and antifungal activity of an anthracycline antibiotic, daunomycin, isolated from Actinomadura roseola. J Agric Food Chem 48:1875–1881CrossRefPubMedGoogle Scholar
  35. Kim BS, Moon SS, Hwang BK (2011) Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produces by Streptomyces libani. Can J Bot 77:850–858Google Scholar
  36. Kim SB, Lonsdale J, Seong CN, Goodfellow M (2003) Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici 1943 AL) emend. Rainey et al. 1997.Antonie Van Leeuwenhoek 83:107–116 Google Scholar
  37. Kim YR, Park S, Kim T-S, Kim M-K, Han J-H, Joung Y, Kim B (2015) Draft genome sequence of Streptacidiphilus oryzae TH49T, an acidophilic actinobacterium isolated from soil. Genome Announc 3:e00703-15. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lazzarini A, Caveletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 78:399–405CrossRefPubMedGoogle Scholar
  39. Leach AW, Mumford JD (2008) Pesticide environmental accounting: a method for assessing the external costs of individual pesticide applications. Environ Pollut 151:139–147CrossRefPubMedGoogle Scholar
  40. Li YH, Hanna MN, Svensater G, Ellen RP, Cvitkovitch DG (2001) Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183:6875–6884CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217CrossRefPubMedGoogle Scholar
  42. Liu Y, Tang H, Lin Z, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33:1484–1492CrossRefPubMedGoogle Scholar
  43. Lyu A, Liu H, Che H, Yang L, Zhang J, Wu M, Chen W, Li G (2017) Reveromycins A and B from Streptomyces sp. 3–10: antifungal activity against plant pathogenic fungi In vitro and in a Strawberry food model system. Front Microbiol 8:550. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mclaughlin BR, Russell PR, Carroll DJ (1988) Cogen plant includes 12-acre greenhouse, oyster farm. Power Eng 92:40–42Google Scholar
  45. Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. Biol Control 56:811–822Google Scholar
  46. Nimaichand S, Tamrihao K, Yang L-L, Zhu W-Y, Zhang Y-G, Li L, Tang S-K, Ningthoujam DS, Li W-J (2013) Streptomyces hundungensis sp. nov., a novel actinomycete with antifungal activity and plant growth promoting traits. J Antibiot 66:205–209CrossRefPubMedGoogle Scholar
  47. Niyasom C, Boonmak S, Meesri N (2015) Antimicrobial activity of acidophilic actinomycetes isolated from acidic soil. KTMITL Sci Tech J 15:62–69Google Scholar
  48. Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 195–230CrossRefGoogle Scholar
  49. Poomthongdee N, Duangmal K, Pathom-aree W (2015) Acidophilic actinomycetes from rhizospheric soil: diversity and properties beneficial to plants. J Antibiot 68:106–114CrossRefPubMedGoogle Scholar
  50. Prasad P, Singh T, Bedi S (2013) Characterization of the cellulolytic enzyme produced by Streptomyces griseorubens (Accession No. AB184139) isolated from Indian soil. J King Saud Univ-Sci 25:245–250CrossRefGoogle Scholar
  51. Rajput MS, Kumar G, Rajkumar S (2013) Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. Arch Microbiol 195:81–88CrossRefPubMedGoogle Scholar
  52. Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555CrossRefPubMedGoogle Scholar
  53. Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol 28:1503–1509CrossRefPubMedGoogle Scholar
  54. Schröder JJ (2014) The position of mineral nitrogen fertilizer in efficient use of nitrogen and land: a review. Nat Resour 5:936–948Google Scholar
  55. Seo M-D, Won H-S, Kim J-H, Mishig-Ochir T, Lee B-J (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286CrossRefPubMedGoogle Scholar
  56. Spector MP, Kenyon WJ (2012) Resistance and survival strategies of Salmonella enteric to environmental stresses. Food Res Int 45:455–481CrossRefGoogle Scholar
  57. Srividya S, Thapa A, Bhat DV, Golmei K, Dey N (2012) Streptomyces sp. 9p as effective biocontrol against chilli soilborne fungal pathogens. Euro J Exp Biol 2:163–173Google Scholar
  58. Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U (2016a) Biocontrol and plant growth promoting activities of Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270CrossRefPubMedGoogle Scholar
  59. Tamreihao K, Nimaichand S, Chanu SB, Devi KA, Lynda R, Jeeniita N, Ningthoujam DS (2016b) Acidotolerant Streptomyces sp. MBRL 10 from limestone quarry site antagonism against fungal pathogens and growth promotion in rice plants. J King Saud Univ-Sci 30(2):143–292. CrossRefGoogle Scholar
  60. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859CrossRefPubMedGoogle Scholar
  61. Ventura LA (2000) The effect of soil pH on plant growth. Science Experiments on File Revised Facts on the File, Inc 4:1–5Google Scholar
  62. Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig (2016) Streptomyces as a plant’s best friend ? FEMS Microbiol Eco 92:1–10Google Scholar
  63. Wang L, Huang Y, Liu Z, Goodfellow M, Rodriguez C (2006) Streptacidiphilus oryzae sp. nov., an actinomycete isolated from rice-field soil in Thailand. Int J Syst Evol Microbiol 56:1257–1261CrossRefGoogle Scholar
  64. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191CrossRefPubMedGoogle Scholar
  65. Williams ST, Flowers TH (1978) The influence of pH on starch hydrolysis of neutrophilic and acidophilic streptomycetes. Microbios 20:99–406PubMedGoogle Scholar
  66. Williams ST, Robinson CS (1981) The role of Streptomycetes in decomposition of chitin in acidic soils. J Gen Microbiol 127:55–63Google Scholar
  67. Williams B, Kabbage M, Min JY, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Winfield MD, Groisman EA (2003) Role of nonhost environment in the lifestyles of Salmonella and Escherichia coli. Appl Environ Microbiol 69:3687–3694CrossRefPubMedPubMedCentralGoogle Scholar
  69. Xiong Z-Q, Zhang Z-P, Li J-H, Wei S-J, Tu G-Q (2012) Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic. Appl Environ Microbiol 78:589–592CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xu C, Wang L, Cui Q, Huang Y, Liu Z, Zheng G, Goodfellow M (2006) Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. no., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov. Intl J Syst Evol Microbiol 56:1109–1115CrossRefGoogle Scholar
  71. Zakalyukina YV, Zenova GM (2007) Antagonistic activity of soil acidophilic actinomycetes. Biol Bull 34:329–332CrossRefGoogle Scholar
  72. Zhang H, Wang H, Wang Y, Cui H, Xie Z, Pu Y, Pei S, Li F, Qin S (2012) Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007. FEMS Microbiol Lett 332:105–112CrossRefPubMedGoogle Scholar
  73. Zhou K, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • K. Tamreihao
    • 1
  • Nimaichand Salam
    • 2
  • Debananda S. Ningthoujam
    • 1
  1. 1.Microbial Biotechnology Research Laboratory, Department of BiochemistryManipur UniversityImphalIndia
  2. 2.State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations