Advertisement

Legume Plant Growth-Promoting Rhizobacteria (PGPRs): Role in Soil Sustainability

Chapter

Abstract

The interactions of plants with different microorganisms in the rhizosphere have varied effects on plant health, productivity, and soil fertility. Numerous types of bacteria play certain vital roles in agriculture production systems by way of establishing different types of relationships that are commonly called as plant growth-promoting rhizobacteria (PGPRs). These PGPRs have multiple roles that have positive impact on plant physiological activities and defense mechanism against biotic and abiotic stresses. Such effects may include symbiotic and asymbiotic N fixation and mobilization; production of siderophores, phytohormones, and antibiotics; counteracting the effect on various pathogenic fungi; solubilization of soil phosphate; and production of growth-promoting indole acetic acid (IAA). Besides, under various stress situations (such as drought, salinity, and metal toxicity), these PGPRs not only halt the deleterious effects of such stresses but also make the plant grow and develop normally. PGPRs through production of ACC (1-aminocyclopropane-1-carboxylate) deaminase can successfully deter the detrimental stress effect of ethylene, enabling the plants to grow normally by alleviating the harmful effect of this. The toxic effects of higher concentration of heavy metals can also be counteracted through PGPRs. These favorable microorganisms reduce the chemical load in rhizosphere and also have multiple synergistic effects on the plant growth and efficacy of other microorganism. Recently, PGPRs have become the most important tool for use as biofertilizers because they provide sustainability of agroecosystems. As the understanding of these PGPRs is increasing, it has become quite evident that apart from legumes, these are also contributing cereals and other nonlegume host crops in a variety of ways. Eco-friendly PGPRs have now become a very important supplement for agriculture production and soil health with involvement of minimal cost. In the light of this background, various aspects of PGPRs biotechnology with special reference to legumes are reviewed and discussed in this chapter.

Keywords

BNF PGPRs Rhizobacteria Rhizobium-legume symbiosis Siderophores Soil health and sustainable agriculture 

Abbreviations

ACC

1-Aminocyclopropane-1-carboxylate

BNF

Biological N fixation

GA

Gibberellic acid

IAA

Indole acetic acid

ISR

Induction of systemic resistance

N

N

NH3

Ammonia

PGPRs

Plant growth-promoting rhizobacteria

pH

Chemical reaction of soil (acidic/neutral/alkaline)

SOM

Soil organic matter

References

  1. Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum bv. viciae phosphatases. Biol Fertil Soils 8:216–218CrossRefGoogle Scholar
  2. Abrol IP, Bronson KF, Duxbury JM, Gupta RK (2000) Long-term fertility experiments in rice-wheat cropping systems. Rice-wheat consortium paper series 6. Rice-wheat consortium for the Indo-Gangetic Plains. New Delhi, p 171Google Scholar
  3. Ahemad M, Khan MS (2009) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Bull Environ Contam Toxicol 82:761–766PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ahemad M, Khan MS (2010) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot 29:325–329CrossRefGoogle Scholar
  5. Ahemad M, Khan MS (2011a) Response of greengram [Vigna radiata (L.) Wilczek] grown in herbicide-amended soil to quizalafop-p-ethyl and clodinafop tolerant plant growth promoting Bradyrhizobium sp. (vigna) MRM6. J Agric Sci Technol 13:1209–1222Google Scholar
  6. Ahemad M, Khan MS (2011b) Effect of tebuconazole-tolerant and plant growth promoting Rhizobium isolate MRP1 on pea-Rhizobium symbiosis. Sci Hortic 129:266–272CrossRefGoogle Scholar
  7. Ahemad M, Khan MS (2012) Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol Plant 34:245–254CrossRefGoogle Scholar
  8. Ahemad M, Mulugeta Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20CrossRefGoogle Scholar
  9. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ahmad M, Zahir ZA, Khalid M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  11. Aliyu IA, Yusuf AA, Abaidoo RC (2013) Response of grain legumes to rhizobial inoculation in two savanna soils of Nigeria. Afr J Microbiol Res 7(15):1332–1342CrossRefGoogle Scholar
  12. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Llande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes. Plant Soil 204:57–67CrossRefGoogle Scholar
  13. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677Google Scholar
  14. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620.  https://doi.org/10.1016/S1002-0160(08)60055-7 CrossRefGoogle Scholar
  15. Asghar HN, Zahir ZA, Arshad M, Khaliq A (2002) Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biol Fertil Soils 35:231–237CrossRefGoogle Scholar
  16. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252CrossRefGoogle Scholar
  17. Beijerinck MW (1888) Die Bacterien der Papilionaceenknölchen. Bot Ztg 46:797–804Google Scholar
  18. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252CrossRefGoogle Scholar
  19. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  20. Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1- aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot.  https://doi.org/10.1093/jxb/erm010
  21. Ben Romdhane S, Tajini F, Trabelsi M, Aouani M, Mhamdi R (2007) Competition for nodule formation between introduced strains of Mesorhizobium ciceri and the native populations of rhizobia nodulating chickpea (Cicer arietinum) in Tunisia. World J Microbiol Biotechnol 23:1195–1201CrossRefGoogle Scholar
  22. Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152CrossRefGoogle Scholar
  23. Bhattacharjee RB, Singh A, Mukhopadhyay (2008) Use of N fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209PubMedCrossRefPubMedCentralGoogle Scholar
  24. Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650CrossRefGoogle Scholar
  25. Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886CrossRefGoogle Scholar
  26. Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res.  https://doi.org/10.1071/SR17001
  27. Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668PubMedPubMedCentralGoogle Scholar
  28. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMedCrossRefPubMedCentralGoogle Scholar
  29. Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey GL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814CrossRefGoogle Scholar
  30. Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium legumioserum biovar phaseoli. Plant Soil 184:311–321CrossRefGoogle Scholar
  31. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P, Drefus B (2000) Photosynthetic Bradyrhizobia are natural endophytes of the AfricanGoogle Scholar
  32. Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov. isolated from the rootnodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280CrossRefGoogle Scholar
  33. Chen WX, Wang E, Wang SY, Li YB, Chen XQ (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root-nodule bacterium isolated from an arid saline environment in Xinjiang, Peoples-Republic-of-China. Int J Syst Bacteriol 45:153–159PubMedCrossRefPubMedCentralGoogle Scholar
  34. Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397CrossRefGoogle Scholar
  35. Chen WM, Zhu WF, Bontemps C, Young JPW, Wei GH (2010) Mesorhizobium alhagi spnov, isolated from wild Alhagi sparsifolia in north-western China. Int J Syst Evol Microbiol 60:958–962PubMedCrossRefPubMedCentralGoogle Scholar
  36. Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918PubMedCrossRefPubMedCentralGoogle Scholar
  37. Contesto C, Desbrosses G, Lefoulon C, Bena G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189CrossRefGoogle Scholar
  38. Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J App Nat Sci 7(1):52–57CrossRefGoogle Scholar
  39. Dardanelli MS, Carletti SM, Paulucci NS, Medeot DB, Rodriguez Caceres EA, Vita FA, Bueno M, Fumero MV, Garcia MB (2010) Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In: Plant growth and health promoting bacteria, vol 18. SpringerGoogle Scholar
  40. Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dazzo FB, Yanni YG, Rizk R, DeBruijn FJ, Rademaker J, Squartini A, Corich V, Mateos P, Martinez-Molina E (2000) Progress in multinational collaborative studies on the beneficial association between Rhizobium leguminoserum bv. Trifolii and rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. IRRI, Los Banos, pp 167–189Google Scholar
  42. Degefu T, Wolde-Meskel E, Liu B, Cleenwerck I, Willems A, Frostegard A (2013) Mesorhizo-bium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobiumabyssinicae sp. nov., isolated from root nodules of different agroforestry legumetrees. Int J Syst Evol Microbiol 63:1746–1753PubMedCrossRefPubMedCentralGoogle Scholar
  43. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B (1998) Characterizationof tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382PubMedCrossRefPubMedCentralGoogle Scholar
  44. Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Ind J Exp Biol 41:1160–1164Google Scholar
  45. Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Leg Res 39(4):590–594Google Scholar
  46. Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299PubMedCrossRefPubMedCentralGoogle Scholar
  47. Diouf D, Duponnois R, Ba AT, Neyra M, Lesueur D (2005) Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Funct Plant Biol 32:1143–1152CrossRefGoogle Scholar
  48. Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? 4th international crop science congress. http://www.cropscience.org.au/icsc2004/poster/1/3/4/510_doddicref.htm. Accessed 17 June 2007
  49. Donate-Correa J, Leon-Barrios M, Perez-Galdona R (2005) Screening for plant growth-promoting rhizobacteria in Chamaecytisusproliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:261–272CrossRefGoogle Scholar
  50. Duodu S, Bhuvaneswari TV, Stokkermans TJW, Peters NK (1999) A positive role for rhizobitoxine in Rhizobium-legume symbiosis. Mol Plant-Microbe Interact 12:1082–1089CrossRefGoogle Scholar
  51. Dutta S, Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461CrossRefGoogle Scholar
  52. Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189CrossRefGoogle Scholar
  53. Egamberdiyeva D, Hoflich G (2003) Influence of growth-promoting bacteria on the growth of wheat in different soils temperatures. Soil Biol Biochem 35:973–978CrossRefGoogle Scholar
  54. El-Akhal MR, Rincon A, Coba de la Peña T, Lucas MM, El Mourabit N, Barrijal S, Pueyo JJ (2013) Effects of salt stress and rhizobial inoculation on growth and N fixation of three peanut cultivars. Plant Biol 15:415–421. [CrossRef] [PubMed]PubMedCrossRefPubMedCentralGoogle Scholar
  55. Figueiredo VB, Buritya HA, Martınez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  56. Gao JL, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH (2004) Mesorhizobium septentri-onale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalusadsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–2012PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ghosh W, Roy P (2006) Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizingchemolithoautotroph from rhizosphere soil of an Indian tropical leguminousplant. Int J Syst Evol Microbiol 56:91–97PubMedCrossRefPubMedCentralGoogle Scholar
  58. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  59. Grichko VP, Glick BR (2001) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39:19–25CrossRefGoogle Scholar
  60. Guan SH, Chen WF, Wang ET, Lu YL, Yan XR, Zhang XX (2008) Mesorhizobium caraganaesp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 58:2646–2653PubMedCrossRefPubMedCentralGoogle Scholar
  61. Han TX, Han LL, Wu LJ, Chen WF, Sui XH, Gu JG (2008) Mesorhizobium gobiense sp. nov. and Mesorhizobium tarimensesp. nov., isolated from wild legumes growing in desert soils of Xinjiang. China Int J Syst Evol Microbiol 58:2610–2618PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hilali A, Prevost D, Broughton WJ, Antoun H (2001) Effects deinoculation avec des souces de Rhizobium legumioserum biovar trifolii sur la crossance du dans deux sols du Maroc. Can J Microbiol 47:590–599PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hiltner L (1904) Uber neuere Erfahrungen and Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Ber€ucksichtigung der Gr€und€ungung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78Google Scholar
  64. Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A.lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425CrossRefGoogle Scholar
  65. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801CrossRefGoogle Scholar
  66. Hussain MB, Mehboob I, Zahir ZA, Naveed M, Asghar HN (2009) Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ 28(1):49–55Google Scholar
  67. Hussain MB, Zahir ZA, Asghar HN, Asghar M (2014) Exopolysaccharides producing rhizobia ameliorate drought stress in wheat. Int J Agric Biol 16:3–13Google Scholar
  68. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobiumm edit erraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898CrossRefGoogle Scholar
  69. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen.nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139CrossRefGoogle Scholar
  70. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364PubMedCrossRefPubMedCentralGoogle Scholar
  71. Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria: current status. In: Microbial strategies for crop improvement. Springer, pp 105–160CrossRefGoogle Scholar
  72. Khan AL, Waqas M, Kang SM (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695. [CrossRef] [PubMed]PubMedCrossRefPubMedCentralGoogle Scholar
  73. Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Fourth international conference on plant pathogen bacteria, Angers, France 2, pp 879–882Google Scholar
  75. Kumar H, Bajpai VK, Dubey RC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598CrossRefGoogle Scholar
  76. Laranjoa M, Alexandrea A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169:2–17CrossRefGoogle Scholar
  77. Lu YL, Chen WF, Wang ET, Han LL, Zhang XX, Chen WX (2009) Mesorhizoblum shangrilense sp nov., isolated from root nodules of Caragana species. Int J Syst Evol Microbiol 59:3012–3018PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane- 1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mandimba GR (1995) Contribution of nodulated legumes on the growth of Zea mays L. under various cropping systems. Symbiosis 19:213–222Google Scholar
  81. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefPubMedCentralGoogle Scholar
  82. Mayak S, Tivosh T, Glick BR (1999) Effect of wild type and mutant plant growth-promoting rhizobacteria on the rooting of mungbean cuttings. J Plant Growth Regul 18:49–53PubMedCrossRefPubMedCentralGoogle Scholar
  83. Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244Google Scholar
  84. Meena RS, Yadav RS (2013) Groundnut yields as influenced by heat unit efficiency, fertility levels and varieties under different growing environment in hyper arid of Rajasthan. Indian J Ecol 40(1):110–114Google Scholar
  85. Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J App Nat Sci 6(2):344–348CrossRefGoogle Scholar
  86. Meena VS, Maurya BR, Meena RS, Meena SK, Singh NP, Malik VK (2014) Microbial dynamics as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi, India. Afr J Microb Res 8(1):257–263Google Scholar
  87. Meena VS, Maurya BR, Meena RS (2015) Residual impact of well-grow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  88. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  89. Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015b) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515CrossRefGoogle Scholar
  90. Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  91. Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J App Nat Sci 8(2):715–718Google Scholar
  92. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260CrossRefGoogle Scholar
  93. Meena RS, Kumar V, Yadav GS, Mitran T (2017a) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Reg. Accepted in pressCrossRefGoogle Scholar
  94. Meena RS, Meena PD, Yadav GS, Yadav SS (2017b) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158CrossRefGoogle Scholar
  95. Mia MAB, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9(37):6001–6009Google Scholar
  96. Musarrat J, Al Khedhairy AA, Al-Arifi S, Khan MS (2009) Role of 1-aminocyclopropane-1-carboxylate deaminase. In: Rhizobium–legume symbiosis. Microbial strategies for crop improvement. Springer, pp 63–83CrossRefGoogle Scholar
  97. Nada A, Jelena B, Branislava B (2012) Mitigating abiotic stress in crop plants by microorganisms. Proc Natl Sci Matica Srpska Novi Sad 123:17–26Google Scholar
  98. Nandasena KG, O’Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp nov and Mesorhizobium opportunistum sp nov., isolated from Biserrulapelecinus L. in Australia. Int J Syst Evol Microbiol 59:2140–2147PubMedCrossRefPubMedCentralGoogle Scholar
  99. Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRefGoogle Scholar
  100. Nour SM, Fernandez MP, Normand P, Cleyet-Marel J-C (1994) Rhizobium ciceri sp. nov., con-sisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522PubMedCrossRefPubMedCentralGoogle Scholar
  101. Nour SM, Cleyet-Marel J-C, Normand P, Fernandez MP (1995) Genomic heterogeneity ofstrains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobiummediterraneum sp. nov. Int J Syst Bacteriol 45:640–648PubMedCrossRefPubMedCentralGoogle Scholar
  102. Okazaki S, Sugawara M, Yuhashi KI, Minamisawa K (2007) Rhizobitoxine-induced chlorosis occurs in coincidence with methionine deficiency in soybeans. Ann Bot 100:55–59PubMedPubMedCentralCrossRefGoogle Scholar
  103. Omar MN, Osman MEH, Kasim WA, Abd El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasiliense. Tasks Veg Sci 44:133–147CrossRefGoogle Scholar
  104. Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:170–180Google Scholar
  105. Pereyra MA, Zalazar CA, Barassi CA (2006) Root phospholipids in Azospirillum-inoculated wheat seedlings exposed to water stress. Plant Physiol Biochem 44:873–879PubMedCrossRefPubMedCentralGoogle Scholar
  106. Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370Google Scholar
  107. Ramirez-Bahena MH, Hernandez M, Peix A, Velazquez E, Leon-Barrios M (2012) Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizo-bium tamadayense sp. nov. Syst Appl Microbiol 35:334–341PubMedCrossRefPubMedCentralGoogle Scholar
  108. Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566CrossRefGoogle Scholar
  109. Reed MLE, Warner BG, Glick BR (2005) Plant growth-promoting bacteria facilitate the growth of the common reed Phragmitesaustralis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429PubMedCrossRefPubMedCentralGoogle Scholar
  110. Requenaf N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667–677CrossRefGoogle Scholar
  111. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophicbacteria. Aust J Plant Physiol 28:829–836Google Scholar
  112. Rokhzadi A, Toashih V (2011) Nutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth-promoting rhizobacteria. Aust J Crop Sci 5:44–48Google Scholar
  113. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane- 1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272CrossRefGoogle Scholar
  114. Saha N, Mandal B (2009) Soil health – a precondition for crop production. In: Microbial strategies for crop improvement. Springer, pp 161–181CrossRefGoogle Scholar
  115. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol. (2007 34:635–648PubMedCrossRefPubMedCentralGoogle Scholar
  116. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas Xuorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292PubMedCrossRefPubMedCentralGoogle Scholar
  117. Shah S, Li J, Moffat BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth promoting rhizobacteria. Can J Microbiol 44:833–843PubMedCrossRefPubMedCentralGoogle Scholar
  118. Shakir MA, Asghari B, Arshad M (2012) Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31:108–112Google Scholar
  119. Sharma P, Khanna V, Kumar PI (2013a) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7:5749–5757CrossRefGoogle Scholar
  120. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013b) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:1–14CrossRefGoogle Scholar
  121. Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937. 00937PubMedPubMedCentralGoogle Scholar
  122. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240PubMedCrossRefPubMedCentralGoogle Scholar
  123. Suarez R, Wong A, Ramirez M, Barraza A, OrozcoMdel C, Cevallos MA (2008) Improvement of drought tolerance and grain yield in common bean by over expressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microb Interact 21:958–966CrossRefGoogle Scholar
  124. Tahir MM, Abbasi MK, Rahim N, Khaliq A, Kazmi MH (2009) Effect of Rhizobium inoculation and NP fertilization on growth, yield and nodulation of soybean (Glycine max L.) in the sub-humid hilly region of Rawalakot Azad Jammu and Kashmir, Pakistan. Afr J Biotechnol 8(22):6191–6200CrossRefGoogle Scholar
  125. Thamer S, Schadler M, Bonte D (2011) Dual benefit from a belowground symbiosis: N fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341:209–219. [CrossRef]CrossRefGoogle Scholar
  126. Tran Van V, Bergo O, Ke SN, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia Vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284CrossRefGoogle Scholar
  127. Tu JC (1981) Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239CrossRefGoogle Scholar
  128. Vargas L, Santa Brigida AB, Mota Filho JP, de Carvalho TG, Rojas CA (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):e114744PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting Rhizobacteria in agricultural sustainability—a review. Molecules 21:573CrossRefGoogle Scholar
  130. Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286CrossRefGoogle Scholar
  131. Vidal C, Chantreuil C, Berge O, Maure L, Escarre J, Bena G (2009) Mesorhizobium metallidurans sp nov., a metal-resistant symbiont of Anthyllis vulneraria growing onmetallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850PubMedCrossRefPubMedCentralGoogle Scholar
  132. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinesesoils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF (2007) Mesorhizobium albiziae sp.nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region ofChina. Int J Syst Evol Microbiol 57:1192–1199PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobiumsp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wani PA, Khan MS, Zaidi A (2008a) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163PubMedCrossRefPubMedCentralGoogle Scholar
  136. Wani PA, Khan MS, Zaidi A (2008b) Impact of zinc-tolerant plant growth promoting rhizobacteriaon lentil grown in zinc-amended soil. Agron Sustain Dev 28:449–455CrossRefGoogle Scholar
  137. Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97Google Scholar
  138. Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92:775–781CrossRefGoogle Scholar
  139. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefPubMedCentralGoogle Scholar
  140. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buck-ley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium legumino- sarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114CrossRefGoogle Scholar
  141. Yanni Y, Rizk R, Abd-El Fattah F (2001) The beneficial plant growth-promoting association of Rhizobium legumioserum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870Google Scholar
  142. Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94CrossRefGoogle Scholar
  143. Yuquan X, Rong S, Zhixing L (1999) Quickly screening a strain of Pseudomonas B8 with both ACC deaminase activity and antagonism against Fusarium oxysporum. http://www.wanfangdata.com.cn/qikan/periodical.articles/shjtdxxb/shjt99/shjt9902/990223.htm. Accessed 11 June 2007
  144. Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedPubMedCentralGoogle Scholar
  145. Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294PubMedCrossRefPubMedCentralGoogle Scholar
  146. Zahran HH (1999) Rhizobium-legume symbiosis and N fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedPubMedCentralGoogle Scholar
  147. Zhang F, Dashti N, Hynes RK, Smith DL (1997) Plant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr] growth and physiology at suboptimal root zones temperatures. Ann Bot 79:243–249CrossRefGoogle Scholar
  148. Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX (2012) Mesorhizobium muleiense sp nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol 62:2737–2742PubMedCrossRefPubMedCentralGoogle Scholar
  149. Zheng WT, Li Y, Wang R, Sui XH, Zhang XX, Zhang JJ (2013) Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol 63:2002–2007PubMedCrossRefPubMedCentralGoogle Scholar
  150. Zhao CT, Wang ET, Zhang YM, Chen WF, Sui XH, Chen WX (2012) Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. Int J Syst Evol Microbiol 62:2180–2186PubMedCrossRefPubMedCentralGoogle Scholar
  151. Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., isolated from rootnodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 60:2552–2556PubMedCrossRefPubMedCentralGoogle Scholar
  152. Zhou S, Li Q, Jiang H, Lindström K, Zhang X (2013) Mesorhizobium sangaii sp. nov., isolatedfrom the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol 63:2794–2799PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of AgronomyRajasthan Agricultural Research Institute, SKN Agriculture UniversityDurgapura-JaipurIndia

Personalised recommendations