Advertisement

Advances in Gastrointestinal Surgery

  • T. K. Chattopadhyay
Chapter
Part of the GI Surgery Annual book series (GISA, volume 24)

Abstract

Please check the hierarchy of the section headings and confirm if correct.

References

  1. 1.
    Boeckxstaens G, El-Serag HB, Smout AJ, Kahrilas PJ. Symptomatic reflux disease: the present, the past and the future. Gut. 2014;63:1185–93.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Johansson J, Håkansson HO, Mellblom L, Kempas A, Johansson KE, Granath F, et al. Prevalence of precancerous and other metaplasia in the distal oesophagus and gastro-oesophageal junction. Scand J Gastroenterol. 2005;40:893–902.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lagergren J, Bergström R, Lindgren A, Nyrén O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med. 1999;340:825–31.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lieberman DA, Oehlke M, Helfand M. Risk factors for Barrett’s esophagus in community-based practice. GORGE consortium. Gastroenterology Outcomes Research Group in Endoscopy. Am J Gastroenterol. 1997;92:1293–7.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Taylor JB, Rubenstein JH. Meta-analyses of the effect of symptoms of gastroesophageal reflux on the risk of Barrett’s esophagus. Am J Gastroenterol. 2010;105(1729):1730–7. quiz 1738.CrossRefGoogle Scholar
  6. 6.
    Rubenstein JH, Mattek N, Eisen G. Age- and sex-specific yield of Barrett’s esophagus by endoscopy indication. Gastrointest Endosc. 2010;71:21–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Thrift AP, Kramer JR, Qureshi Z, Richardson PA, El-Serag HB. Age at onset of GERD symptoms predicts risk of Barrett’s esophagus. Am J Gastroenterol. 2013;108:915–22.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rubenstein JH, Scheiman JM, Sadeghi S, Whiteman D, Inadomi JM. Esophageal adenocarcinoma incidence in individuals with gastroesophageal reflux: synthesis and estimates from population studies. Am J Gastroenterol. 2011;106:254–60.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hampel H, Abraham NS, El-Serag HB. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann Intern Med. 2005;143:199–211.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Thrift AP, Kramer JR, Alsarraj A, El-Serag HB. Fat mass by bioelectrical impedance analysis is not associated with increased risk of Barrett esophagus. J Clin Gastroenterol. 2014;48:218–23.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Chak A, Lee T, Kinnard MF, Brock W, Faulx A, Willis J, et al. Familial aggregation of Barrett’s oesophagus, oesophageal adenocarcinoma, and oesophagogastric junctional adenocarcinoma in Caucasian adults. Gut. 2002;51:323–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chak A, Faulx A, Kinnard M, Brock W, Willis J, Wiesner GL, et al. Identification of Barrett’s esophagus in relatives by endoscopic screening. Am J Gastroenterol. 2004;99:2107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Corley DA, Kubo A, Levin TR, Block G, Habel L, Rumore G, et al. Race, ethnicity, sex and temporal differences in Barrett’s oesophagus diagnosis: a large community-based study, 1994–2006. Gut. 2009;58:182–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Andrici J, Cox MR, Eslick GD. Cigarette smoking and the risk of Barrett’s esophagus: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2013;28:1258–73.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kubo A, Levin TR, Block G, Rumore GJ, Quesenberry CP Jr, Buffler P, et al. Alcohol types and sociodemographic characteristics as risk factors for Barrett’s esophagus. Gastroenterology. 2009;136:806–15.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Thrift AP, Kramer JR, Richardson PA, El-Serag HB. No significant effects of smoking or alcohol consumption on risk of Barrett’s esophagus. Dig Dis Sci. 2014;59:108–16.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Leggett CL, Nelsen EM, Tian J, Schleck CB, Zinsmeister AR, Dunagan KT, et al. Metabolic syndrome as a risk factor for Barrett esophagus: a population-based case-control study. Mayo Clin Proc. 2013;88:157–65.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Iyer PG, Borah BJ, Heien HC, Das A, Cooper GS, Chak A. Association of Barrett’s esophagus with type II diabetes mellitus: results from a large population-based case-control study. Clin Gastroenterol Hepatol. 2013;11:1108–14.e5.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Rubenstein JH, Inadomi JM, Scheiman J, Schoenfeld P, Appelman H, Zhang M, et al. Association between Helicobacter pylori and Barrett’s esophagus, erosive esophagitis, and gastroesophageal reflux symptoms. Clin Gastroenterol Hepatol. 2014;12:239–45.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fischbach LA, Graham DY, Kramer JR, Rugge M, Verstovsek G, Parente P, et al. Association between Helicobacter pylori and Barrett’s esophagus: a case-control study. Am J Gastroenterol. 2014;109:357–68.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Gopal DV, Lieberman DA, Magaret N, Fennerty MB, Sampliner RE, Garewal HS, et al. Risk factors for dysplasia in patients with Barrett’s esophagus (BE): results from a multicenter consortium. Dig Dis Sci. 2003;48:1537–41.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Singh S, Garg SK, Singh PP, Iyer PG, El-Serag HB. Acid-suppressive medications and risk of oesophageal adenocarcinoma in patients with Barrett’s oesophagus: a systematic review and meta-analysis. Gut. 2014;63:1229–37.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Zhang S, Zhang XQ, Ding XW, Yang RK, Huang SL, Kastelein F, et al. Cyclooxygenase inhibitors use is associated with reduced risk of esophageal adenocarcinoma in patients with Barrett’s esophagus: a meta-analysis. Br J Cancer. 2014;110:2378–88.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Singh S, Singh AG, Singh PP, Murad MH, Iyer PG. Statins are associated with reduced risk of esophageal cancer, particularly in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:620–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Desai TK, Krishnan K, Samala N, Singh J, Cluley J, Perla S, et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett’s oesophagus: a meta-analysis. Gut. 2012;61:970–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Singh S, Manickam P, Amin AV, Samala N, Schouten LJ, Iyer PG, et al. Incidence of esophageal adenocarcinoma in Barrett’s esophagus with low-grade dysplasia: a systematic review and meta-analysis. Gastrointest Endosc. 2014;79:897–909.e4. quiz 983.e1, 983.e3.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Shaheen NJ, Sharma P, Overholt BF, Wolfsen HC, Sampliner RE, Wang KK, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360:2277–88.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Overholt BF, Lightdale CJ, Wang KK, Canto MI, Burdick S, Haggitt RC, et al. International Photodynamic Group for High-Grade Dysplasia in Barrett’s Esophagus. Photodynamic therapy with porfimer sodium for ablation of high-grade dysplasia in Barrett’s esophagus: international, partially blinded, randomized phase III trial. Gastrointest Endosc. 2005;62:488–98. Erratum in: Gastrointest Endosc 2006;63:359.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    McGraw T, Mittal V, Stiles B. Esophageal cancer: what happens after 5 years? News from Sandra & Edward Meyer Cancer Center. Available at http://meyercancer.weill.cornell.edu/news/2015-04-29/esophageal.cancer.what-happens-after-5-years. Accessed on 10 Oct 2017.
  30. 30.
    Correa P, Piazuelo MB. The gastric precancerous cascade. J Dig Dis. 2012;13:2–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Shibagaki K, Amano Y, Ishimura N, Taniguchi H, Fujita H, Adachi S, et al. Diagnostic accuracy of magnification endoscopy with acetic acid enhancement and narrow-band imaging in gastric mucosal neoplasms. Endoscopy. 2016;48:16–25.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Bok GH, Jeon SR, Cho JY, Cho JH, Lee WC, Jin SY, et al. The accuracy of probe-based confocal endomicroscopy versus conventional endoscopic biopsies for the diagnosis of superficial gastric neoplasia (with videos). Gastrointest Endosc. 2013;77:899–908.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Davies J, Chalmers AG, Sue-Ling HM, May J, Miller GV, Martin IG, et al. Spiral computed tomography and operative staging of gastric carcinoma: a comparison with histopathological staging. Gut. 1997;41:314–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Chan EE, George TJ Jr. Gastric cancers. In: Abraham J, Gulley JL, Allegra CJ, editors. The Bethesda handbook of clinical oncology. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2014. p. 66–81.Google Scholar
  35. 35.
    Pyo JH, Lee H, Min BH, Lee JH, Choi MG, Lee JH, et al. Long-term outcome of endoscopic resection vs. surgery for early gastric cancer: a non-inferiority-matched cohort study. Am J Gastroenterol. 2016;111:240–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    ASGE Technology Committee, Maple JT, Abu Dayyeh BK, Chauhan SS, Hwang JH, Komanduri S, et al. Endoscopic submucosal dissection. Gastrointest Endosc. 2015;81:1311–25.CrossRefGoogle Scholar
  37. 37.
    Na S, Ahn JY, Choi KD, Kim MY, Lee JH, Choi KS, et al. Delayed bleeding rate according to the forest classification in second-look endoscopy after endoscopic submucosal dissection. Dig Dis Sci. 2015;60:3108–17.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Han S, Hsu A, Wassef WY. An update in the endoscopic management of gastric cancer. Curr Opin Gastroenterol. 2016;32:492–500.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology. Available at www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed on 28 Feb 2016.
  40. 40.
    Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer. 2011;14:113–23.CrossRefGoogle Scholar
  41. 41.
    Hahn KY, Park JC, Kim EH, Shin S, Park CH, Chung H, et al. Incidence and impact of scheduled endoscopic surveillance on recurrence after curative endoscopic resection for early gastric cancer. Gastrointest Endosc. 2016;84:628–38.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Cao Y, Nishihara R, Wu K, Wang M, Ogino S, Willett WC, et al. Population-wide impact of long-term use of aspirin and the risk for cancer. JAMA Oncol. 2016;2:762–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hu Y, Huang C, Sun Y, Su X, Cao H, Hu J, et al. Morbidity and mortality of laparoscopic versus open D2 distal gastrectomy for advanced gastric cancer: a randomized controlled trial. J Clin Oncol. 2016;34:1350–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ilson DH. An update in the nonendoscopic treatment of gastric cancer. Curr Opin Gastroenterol. 2016;32:501–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Park SH, Sohn TS, Lee J, Lim DH, Hong ME, Kim KM, et al. Phase III trial to compare adjuvant chemotherapy with capecitabine and cisplatin versus concurrent chemoradiotherapy in gastric cancer: final report of the adjuvant chemoradiotherapy in stomach tumors trial, including survival and subset analyses. J Clin Oncol. 2015;33:3130–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Verheij M, Jansen EPM, Cats A, van Grieken NCT, Aaronson NK, Boot H, et al. A multicenter randomized phase III trial of neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy in resectable gastric cancer: first results from the CRITICS study. J Clin Oncol. 2016;34(15_Suppl):4000.CrossRefGoogle Scholar
  47. 47.
    Shapiro J, van Lanschot JJ, Hulshof MC, van Hagen P, van Berge Henegouwen MI, Wijnhoven BP, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16:1090–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    De Fabiani E, Mitro N, Gilardi F, et al. Coordinated control of cholesterol metabolism to bile acids and gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-fed cycle. J Biol Chem. 2003;278:39124–32.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem. 2004;279:23158–65.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fujitani K, Yang HK, Mizusawa J, Kim YW, Terashima M, Han SU, et al. Gastrectomy plus chemotherapy versus chemotherapy alone for advanced gastric cancer with a single non-curable factor (REGATTA): a phase 3, randomised controlled trial. Lancet Oncol. 2016;17:309–18.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Guimbaud R, Louvet C, Ries P, Ychou M, Maillard E, André T, et al. Prospective, randomized, multicenter, phase III study of fluorouracil, leucovorin, and irinotecan versus epirubicin, cisplatin, and capecitabine in advanced gastric adenocarcinoma: a French intergroup (Fédération Francophone de Cancérologie Digestive, Fédération Nationale des Centres de LutteContre le Cancer, and Groupe Coopérateur Multidisciplinaireen Oncologie) study. J Clin Oncol. 2014;32:3520–6. Erratum in: J Clin Oncol 2015;33:1416.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hecht JR, Bang YJ, Qin SK, Chung HC, Xu JM, Park JO, et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC--A randomized phase III trial. J Clin Oncol. 2016;34:443–51.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kang YK, Shah MA, Ohtsu A, Van Cutsem E, Ajani JA, van der Horst T, et al. A randomized, open-label, multicenter, adaptive phase 2/3 study of trastuzumab emtansine (T-DM1) versus a taxane (TAX) in patients (pts) with previously treated HER2-positive locally advanced or metastatic gastric/gastroesophageal junction adenocarcinoma (LA/MGC/GEJC). J Clin Oncol. 2016;34(Suppl 4S):5.CrossRefGoogle Scholar
  54. 54.
    Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–26.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Winawer SJ, Zauber AG, Ho MN, O’Brien MJ, Gottlieb LS, Sternberg SS, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med. 1993;329:1977–81.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Aziz Aadam A, Wani S, Kahi C, Kaltenbach T, Oh Y, Edmundowicz S, et al. Physician assessment and management of complex colon polyps: a multicenter video-based survey study. Am J Gastroenterol. 2014;109:1312–24.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Sawhney MS, Salfiti N, Nelson DB, Lederle FA, Bond JH. Risk factors for severe delayed postpolypectomy bleeding. Endoscopy. 2008;40:115–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Burgess NG, Bahin FF, Bourke MJ. Colonic polypectomy (with videos). Gastrointest Endosc. 2015;81:813–35.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Burgess NG, Tutticci NJ, Pellise M, Bourke MJ. Sessile serrated adenomas/polyps with cytologic dysplasia: a triple threat for interval cancer. Gastrointest Endosc. 2014;80:307–10.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Moss A, Bourke MJ, Pathmanathan N. Safety of colonic tattoo with sterile carbon particle suspension: a proposed guideline with illustrative cases. Gastrointest Endosc. 2011;74:214–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Wang J, Zhang XH, Ge J, Yang CM, Liu JY, Zhao SL. Endoscopic submucosal dissection vs endoscopic mucosal resection for colorectal tumors: A meta-analysis. World J Gastroenterol. 2014;20:8282–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Barendse R, Musters G, Fockens P, Bemelman W, de Graaf E, van den Broek F, et al. Endoscopic mucosal resection of large rectal adenomas in the era of centralization: results of a multicenter collaboration. United European Gastroenterol J. 2014;2:497–504.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ahlenstiel G, Hourigan LF, Brown G, Zanati S, Williams SJ, Singh R, et al. Actual endoscopic versus predicted surgical mortality for treatment of advanced mucosal neoplasia of the colon. Gastrointest Endosc. 2014;80:668–76.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Moss A, Williams SJ, Hourigan LF, Brown G, Tam W, Singh R, et al. Long-term adenoma recurrence following wide-field endoscopic mucosal resection (WF-EMR) for advanced colonic mucosal neoplasia is infrequent: results and risk factors in 1000 cases from the Australian Colonic EMR (ACE) study. Gut. 2015;64:57–65.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Nanda KS, Tutticci N, Burgess NG, Sonson R, Williams SJ, Bourke MJ. Endoscopic mucosal resection of laterally spreading lesions involving the ileocecal valve: technique, risk factors for failure, and outcomes. Endoscopy. 2015;47:710–8.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Holt BA, Bassan MS, Sexton A, Williams SJ, Bourke MJ. Advanced mucosal neoplasia of the anorectal junction: endoscopic resection technique and outcomes (with videos). Gastrointest Endosc. 2014;79:119–26.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Thirumurthi S, Raju GS. How to deal with large colorectal polyps: snare, endoscopic mucosal resection, and endoscopic submucosal dissection; resect or refer? Curr Opin Gastroenterol. 2016;32:26–31.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tanaka S, Asayama N, Shigita K, Hayashi N, Oka S, Chayama K. Towards safer and appropriate application of endoscopic submucosal dissection for T1 colorectal carcinoma as total excisional biopsy: future perspectives. Dig Endosc. 2015;27:216–22.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Shen B. Problems after restorative proctocolectomy: assessment and therapy. Curr Opin Gastroenterol. 2016;32:49–54.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gardenbroek TJ, Musters GD, Buskens CJ, Ponsioen CY, D’Haens GR, Dijkgraaf MG, et al. Early reconstruction of the leaking ileal pouch-anal anastomosis: a novel solution to an old problem. Color Dis. 2015;17:426–32.CrossRefGoogle Scholar
  71. 71.
    Wu XR, Wong RC, Shen B. Endoscopic needle-knife therapy for ileal pouch sinus: a novel approach for the surgical adverse event (with video). Gastrointest Endosc. 2013;78:875–85.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lian L, Shen B. Closure of leak at the tip of the ‘J’ after ileal pouch anal anastomosis using a novel over-the-scope clipping system. J Coloproctol. 2014;34:120–3.CrossRefGoogle Scholar
  73. 73.
    Joyce MR, Fazio VW, Hull TT, Church J, Kiran RP, Mor I, et al. Ileal pouch prolapse: prevalence, management, and outcomes. J Gastrointest Surg. 2010;14:993–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Navaneethan U, Venkatesh PG, Bennett AE, Patel V, Hammel J, Kiran RP, et al. Impact of budesonide on liver function tests and gut inflammation in patients with primary sclerosing cholangitis and ileal pouch anal anastomosis. J Crohns Colitis. 2012;6:536–42.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Seril DN, Yao Q, Lashner BA, Shen B. Autoimmune features are associated with chronic antibiotic-refractory pouchitis. Inflamm Bowel Dis. 2015;21:110–20.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Navaneethan U, Bennett AE, Venkatesh PG, Lian L, Hammel J, Patel V, et al. Tissue infiltration of IgG4+ plasma cells in symptomatic patients with ileal pouch-anal anastomosis. J Crohns Colitis. 2011;5:570–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wu XR, Ashburn J, Remzi FH, Li Y, Fass H, Shen B. Male gender is associated with a high risk for chronic antibiotic-refractory pouchitis and ileal pouch anastomotic sinus. J Gastrointest Surg. 2016;20:631–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Wu XR, Kirat HT, Xhaja X, Hammel JP, Kiran RP, Church JM. The impact of mesenteric tension on pouch outcome and quality of life in patients undergoing restorative proctocolectomy. Color Dis. 2014;16:986–94.CrossRefGoogle Scholar
  79. 79.
    Shen B, Plesec TP, Remer E, Kiran P, Remzi FH, Lopez R, et al. Asymmetric endoscopic inflammation of the ileal pouch: a sign of ischemic pouchitis? Inflamm Bowel Dis. 2010;16:836–46.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Nyabanga CT, Kulkarni G, Shen B. Hyperbaric oxygen therapy for chronic antibiotic-refractory ischemic pouchitis. Gastroenterol Rep. 2017;5:320–1.Google Scholar
  81. 81.
    Shen B, Lashner BA, Bennett AE, Remzi FH, Brzezinski A, Achkar JP, et al. Treatment of rectal cuff inflammation (cuffitis) in patients with ulcerative colitis following restorative proctocolectomy and ileal pouch-anal anastomosis. Am J Gastroenterol. 2004;99:1527–31.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Selvaggi F, Pellino G, Canonico S, Sciaudone G. Systematic review of cuff and pouch cancer in patients with ileal pelvic pouch for ulcerative colitis. Inflamm Bowel Dis. 2014;20:1296–308.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Andersen NN, Jess T. Has the risk of colorectal cancer in inflammatory bowel disease decreased? World J Gastroenterol. 2013;19:7561–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jess T, Horváth-Puhó E, Fallingborg J, Rasmussen HH, Jacobsen BA. Cancer risk in inflammatory bowel disease according to patient phenotype and treatment: a Danish population-based cohort study. Am J Gastroenterol. 2013;108:1869–76.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Beaugerie L, Svrcek M, Seksik P, Bouvier AM, Simon T, Allez M, et al. Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterology. 2013;145:166–75.e8.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Desai D, Shah S, Deshmukh A, Abraham P, Joshi A, Gupta T, et al. Colorectal cancers in ulcerative colitis from a low-prevalence area for colon cancer. World J Gastroenterol. 2015;21:3644–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Choi CH, Rutter MD, Askari A, Lee GH, Warusavitarne J, Moorghen M, et al. Forty-year analysis of colonoscopic surveillance program for neoplasia in ulcerative colitis: an updated overview. Am J Gastroenterol. 2015;110:1022–34.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Abraham BP. Cancer surveillance in ulcerative colitis and Crohn’s disease: new strategies. Curr Opin Gastroenterol. 2016;32:32–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Connelly TM, Berg AS, Harris LR, Brinton DL, Hegarty JP, Deiling SM, et al. Ulcerative colitis neoplasia is not associated with common inflammatory bowel disease single-nucleotide polymorphisms. Surgery. 2014;156:253–62.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Laine L, Kaltenbach T, Barkun A, McQuaid KR, Subramanian V, Soetikno R, SCENIC Guideline Development Panel. SCENIC international consensus statement on surveillance and management of dysplasia in inflammatory bowel disease. Gastroenterology. 2015;148:639–51.e28.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    American Society for Gastrointestinal Endoscopy Standards of Practice Committee, Shergill AK, Lightdale JR, Bruining DH, Acosta RD, Chandrasekhara V, Chathadi KV, et al. The role of endoscopy in inflammatory bowel disease. Gastrointest Endosc. 2015;81:1101–21.e1–13.CrossRefGoogle Scholar
  92. 92.
    Picco MF, Pasha S, Leighton JA, Bruining D, Loftus EV Jr, Thomas CS, et al. Procedure time and the determination of polypoid abnormalities with experience: implementation of a chromoendoscopy program for surveillance colonoscopy for ulcerative colitis. Inflamm Bowel Dis. 2013;19:1913–20.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Iacopini F, Saito Y, Yamada M, Grossi C, Rigato P, Costamagna G, et al. Curative endoscopic submucosal dissection of large nonpolypoid superficial neoplasms in ulcerative colitis (with videos). Gastrointest Endosc. 2015;82:734–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Scarpa M, Castagliuolo I, Castoro C, Pozza A, Scarpa M, Kotsafti A, et al. Inflammatory colonic carcinogenesis: a review on pathogenesis and immunosurveillance mechanisms in ulcerative colitis. World J Gastroenterol. 2014;20:6774–85.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Horvath B, Liu G, Wu X, Lai KK, Shen B, Liu X. Overexpression of p53 predicts colorectal neoplasia risk in patients with inflammatory bowel disease and mucosa changes indefinite for dysplasia. Gastroenterol Rep. 2015;3:344–9.CrossRefGoogle Scholar
  96. 96.
    Xu X, Xu X, Ciren Y, Feng B, Tao C, Xia Y, et al. Chemopreventive effects of 5-amino salicylic acids on inflammatory bowel disease-associated colonic cancer and colonic dysplasia: a meta-analysis. Int J Clin Exp Med. 2015;8:2212–8.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Jess T, Lopez A, Andersson M, Beaugerie L, Peyrin-Biroulet L. Thiopurines and risk of colorectal neoplasia in patients with inflammatory bowel disease: a meta-analysis. Clin Gastroenterol Hepatol. 2014;12:1793–1800.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Hansen JD, Kumar S, Lo WK, Poulsen DM, Halai UA, Tater KC. Ursodiol and colorectal cancer or dysplasia risk in primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis. Dig Dis Sci. 2013;58:3079–87.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Korelitz BI, Sultan K, Kothari M, Arapos L, Schneider J, Panagopoulos G. Histological healing favors lower risk of colon carcinoma in extensive ulcerative colitis. World J Gastroenterol. 2014;20:4980–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Heron M. Deaths: leading causes for 2011. Natl Vital Stat Rep. 2015;64:1–96.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Wlodzimirow KA, Eslami S, Abu-Hanna A, Nieuwoudt M, Chamuleau RA. A systematic review on prognostic indicators of acute on chronic liver failure and their predictive value for mortality. Liver Int. 2013;33:40–52.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Sarin SK, Kumar A, Almeida JA, Chawla YK, Fan ST, Garg H, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL). Hepatol Int. 2009;3:269–82.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Sarin SK, Kedarisetty CK, Abbas Z, Amarapurkar D, Bihari C, Chan AC, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the liver (APASL) 2014. Hepatol Int. 2014;8:453–71.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Duseja A, Choudhary NS, Gupta S, Dhiman RK, Chawla Y. APACHE II score is superior to SOFA, CTP and MELD in predicting the short-term mortality in patients with acute-on-chronic liver failure (ACLF). J Dig Dis. 2013;14:484–90.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Chatzicostas C, Roussomoustakaki M, Notas G, Vlachonikolis IG, Samonakis D, Romanos J, et al. A comparison of Child-Pugh, APACHE II and APACHE III scoring systems in predicting hospital mortality of patients with liver cirrhosis. BMC Gastroenterol. 2003;3:7.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Chen YC, Tian YC, Liu NJ, Ho YP, Yang C, Chu YY, et al. Prospective cohort study comparing sequential organ failure assessment and acute physiology, age, chronic health evaluation III scoring systems for hospital mortality prediction in critically ill cirrhotic patients. Int J Clin Pract. 2006;60:160–6.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Rahimi RS, Rockey DC. Acute on chronic liver failure: definitions, treatments and outcomes. Curr Opin Gastroenterol. 2016;32:172–81.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Bajaj JS, O’Leary JG, Reddy KR, Wong F, Biggins SW, Patton H, et al. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology. 2014;60:250–6.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Olson JC, Kamath PS. Acute-on-chronic liver failure: concept, natural history, and prognosis. Curr Opin Crit Care. 2011;17:165–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Jalan R, Gines P, Olson JC, Mookerjee RP, Moreau R, Garcia-Tsao G, et al. Acute-on chronic liver failure. J Hepatol. 2012;57:1336–48.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Rosselli M, MacNaughtan J, Jalan R, Pinzani M. Beyond scoring: a modern interpretation of disease progression in chronic liver disease. Gut. 2013;62:1234–41.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Zhu P, Duan L, Chen J, Xiong A, Xu Q, Zhang H, et al. Gene silencing of NALP3 protects against liver ischemia-reperfusion injury in mice. Hum Gene Ther. 2011;22:853–64.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Wright G, Davies NA, Shawcross DL, Hodges SJ, Zwingmann C, Brooks HF, et al. Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology. 2007;45:1517–26.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Levesque E, Saliba F, Ichaï P, Samuel D. Outcome of patients with cirrhosis requiring mechanical ventilation in ICU. J Hepatol. 2014;60:570–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Stadlbauer V, Krisper P, Aigner R, Haditsch B, Jung A, Lackner C, et al. Effect of extracorporeal liver support by MARS and Prometheus on serum cytokines in acute-on-chronic liver failure. Crit Care. 2006;10:R169.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Lopez-Talavera JC, Merrill WW, Groszmann RJ. Tumor necrosis factor alpha: a major contributor to the hyperdynamic circulation in prehepatic portal-hypertensive rats. Gastroenterology. 1995;108:761–7.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Liu H, Lee SS. Acute-on-chronic liver failure: the heart and systemic hemodynamics. Curr Opin Crit Care. 2011;17:190–4.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Catalina MV, Barrio J, Anaya F, Salcedo M, Rincón D, Clemente G, et al. Hepatic and systemic haemodynamic changes after MARS in patients with acute on chronic liver failure. Liver Int. 2003;23(Suppl 3):39–43.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Amathieu R, Triba MN, Nahon P, Bouchemal N, Kamoun W, Haouache H, et al. Serum 1H-NMR metabolomic fingerprints of acute-on-chronic liver failure in intensive care unit patients with alcoholic cirrhosis. PLoS One. 2014;9:e89230.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Adebayo D, Morabito V, Andreola F, Pieri G, Luong TV, Dhillon A, et al. Mechanism of cell death in acute-on-chronic liver failure: a clinico-pathologic-biomarker study. Liver Int. 2015;35:2564–74.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Arabi YM, Dara SI, Memish Z, Al Abdulkareem A, Tamim HM, Al-Shirawi N, et al. Antimicrobial therapeutic determinants of outcomes from septic shock among patients with cirrhosis. Hepatology. 2012;56:2305–15.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Yu S, Jianqin H, Wei W, Jianrong H, Yida Y, Jifang S, et al. The efficacy and safety of nucleo(t)ide analogues in the treatment of HBV-related acute-on-chronic liver failure: a meta-analysis. Ann Hepatol. 2013;12:364–72.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Kedarisetty CK, Anand L, Bhardwaj A, Bhadoria AS, Kumar G, Vyas AK, et al. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis. Gastroenterology. 2015;148:1362–70.e7.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Garg V, Garg H, Khan A, Trehanpati N, Kumar A, Sharma BC, et al. Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology. 2012;142:505–12.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Sharma P, Schaubel DE, Gong Q, Guidinger M, Merion RM. End-stage liver disease candidates at the highest model for end-stage liver disease scores have higher wait-list mortality than status-1A candidates. Hepatology. 2012;55:192–8. Erratum in: Hepatology 2012;55:1311.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Duan BW, Lu SC, Wang ML, Liu JN, Chi P, Lai W, et al. Liver transplantation in acute-on-chronic liver failure patients with high model for end-stage liver disease (MELD) scores: a single center experience of 100 consecutive cases. J Surg Res. 2013;183:936–43.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Mazzaferro V, Bhoori S, Sposito C, Bongini M, Langer M, Miceli R, et al. Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl. 2011;17(Suppl 2):S44–57.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Zheng Z, Liang W, Milgrom DP, Zheng Z, Schroder PM, Kong NS, et al. Liver transplantation versus liver resection in the treatment of hepatocellular carcinoma: a meta-analysis of observational studies. Transplantation. 2014;97:227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Faitot F, Allard MA, Pittau G, Ciacio O, Adam R, Castaing D, et al. Impact of clinically evident portal hypertension on the course of hepatocellular carcinoma in patients listed for liver transplantation. Hepatology. 2015;62:179–87.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Schlansky B, Chen Y, Scott DL, Austin D, Naugler WE. Waiting time predicts survival after liver transplantation for hepatocellular carcinoma: a cohort study using the United Network for Organ Sharing registry. Liver Transpl. 2014;20:1045–56.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Vitale A, Huo TL, Cucchetti A, Lee YH, Volk M, Frigo AC, et al. Survival benefit of liver transplantation versus resection for hepatocellular carcinoma: impact of MELD score. Ann Surg Oncol. 2015;22:1901–7.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lim KC, Wang VW, Siddiqui FJ, Shi L, Chan ES, Oh HC, et al. Cost-effectiveness analysis of liver resection versus transplantation for early hepatocellular carcinoma within the Milan criteria. Hepatology. 2015;61:227–37.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Poon RT, Fan ST, Lo CM, Liu CL, Wong J. Long-term survival and pattern of recurrence after resection of small hepatocellular carcinoma in patients with preserved liver function: implications for a strategy of salvage transplantation. Ann Surg. 2002;235:373–82.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Chan DL, Alzahrani NA, Morris DL, Chua TC. Systematic review of efficacy and outcomes of salvage liver transplantation after primary hepatic resection for hepatocellular carcinoma. J Gastroenterol Hepatol. 2014;29:31–41.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Onaca N, Davis GL, Jennings LW, Goldstein RM, Klintmalm GB. Improved results of transplantation for hepatocellular carcinoma: a report from the International Registry of Hepatic Tumors in Liver Transplantation. Liver Transpl. 2009;15:574–80.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Naugler WE, Sonnenberg A. Survival and cost-effectiveness analysis of competing strategies in the management of small hepatocellular carcinoma. Liver Transpl. 2010;16:1186–94.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Mehta N, Sarkar M, Dodge JL, Fidelman N, Roberts JP, Yao FY. Intention to treat outcome of T1 hepatocellular carcinoma with the ‘wait and not ablate’ approach until meeting T2 criteria for liver transplant listing. Liver Transpl. 2016;22:178–87.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–9.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Duffy JP, Vardanian A, Benjamin E, Watson M, Farmer DG, Ghobrial RM, et al. Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA. Ann Surg. 2007;246:502–9. discussion 509–11.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009;10:35–43.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Kim PT, Onaca N, Chinnakotla S, Davis GL, Jennings LW, McKenna GJ, et al. Tumor biology and pretransplant locoregional treatments determine outcomes in patients with T3 hepatocellular carcinoma undergoing liver transplantation. Clin Transpl. 2013;27:311–8.CrossRefGoogle Scholar
  142. 142.
    Xu X, Lu D, Ling Q, Wei X, Wu J, Zhou L, et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Gut. 2016;65:1035–41.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Lei JY, Wang WT, Yan LN. Up-to-seven criteria for hepatocellular carcinoma liver transplantation: a single center analysis. World J Gastroenterol. 2013;19:6077–83.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Kulik LM, Fisher RA, Rodrigo DR, Brown RS Jr, Freise CE, Shaked A, et al. Outcomes of living and deceased donor liver transplant recipients with hepatocellular carcinoma: results of the A2ALL cohort. Am J Transplant. 2012;12:2997–3007.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Yao FY, Mehta N, Flemming J, Dodge J, Hameed B, Fix O, et al. Downstaging of hepatocellular cancer before liver transplant: long-term outcome compared to tumors within Milan criteria. Hepatology. 2015;61:1968–77.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Parikh ND, Waljee AK, Singal AG. Downstaging hepatocellular carcinoma: a systematic review and pooled analysis. Liver Transpl. 2015;21:1142–52. Erratum in: Liver Transpl 2016;22:138.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    van Santvoort HC, Besselink MG, Bakker OJ, Hofker HS, Boermeester MA, Dejong CH, et al. A step-up approach or open necrosectomy for necrotizing pancreatitis. N Engl J Med. 2010;362:1491–502.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Banks PA. Acute pancreatitis: landmark studies, management decisions, and the future. Pancreas. 2016;45:633–40.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Bakker OJ, van Santvoort HC, van Brunschot S, Geskus RB, Besselink MG, Bollen TL, et al. Endoscopic transgastric vs surgical necrosectomy for infected necrotizing pancreatitis: a randomized trial. JAMA. 2012;307:1053–61.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Ahmed Ali U, Pahlplatz JM, Nealon WH, van Goor H, Gooszen HG, Boermeester MA. Endoscopic or surgical intervention for painful obstructive chronic pancreatitis. Cochrane Database Syst Rev. 2015;3:CD007884.Google Scholar
  151. 151.
    Büchler MW, Friess H, Müller MW, Wheatley AM, Beger HG. Randomized trial of duodenum-preserving pancreatic head resection versus pylorus-preserving Whipple in chronic pancreatitis. Am J Surg. 1995;169:65–9. discussion 69–70.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Klempa I, Spatny M, Menzel J, Baca I, Nustede R, Stöckmann F, et al. Pancreatic function and quality of life after resection of the head of the pancreas in chronic pancreatitis. A prospective, randomized comparative study after duodenum preserving resection of the head of the pancreas versus Whipple’s operation. Chirurg. 1995;66:350–9.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Izbicki JR, Bloechle C, Knoefel WT, Kuechler T, Binmoeller KF, Broelsch CE. Duodenum-preserving resection of the head of the pancreas in chronic pancreatitis. A prospective, randomized trial. Ann Surg. 1995;221:350–8.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Strate T, Taherpour Z, Bloechle C, Mann O, Bruhn JP, Schneider C, et al. Long-term follow-up of a randomized trial comparing the Beger and Frey procedures for patients suffering from chronic pancreatitis. Ann Surg. 2005;241:591–8.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Klaiber U, Alldinger I, Probst P, Bruckner T, Contin P, Köninger J, et al. Duodenum-preserving pancreatic head resection: 10-year follow-up of a randomized controlled trial comparing the Beger procedure with the Berne modification. Surgery. 2016;160:127–35.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Wilson GC, Sutton JM, Smith MT, Schmulewitz N, Salehi M, Choe KA, et al. Total pancreatectomy with islet cell autotransplantation as the initial treatment for minimal-change chronic pancreatitis. HPB (Oxford). 2015;17:232–8.CrossRefGoogle Scholar
  157. 157.
    Wilson GC, Sutton JM, Smith MT, Schmulewitz N, Salehi M, Choe KA, et al. Completion pancreatectomy and islet cell autotransplantation as salvage therapy for patients failing previous operative interventions for chronic pancreatitis. Surgery. 2015;158:872–8. discussion 879–80.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Kleeff J, Michalski C, Kong B, Erkan M, Roth S, Siveke J, et al. Surgery for cystic pancreatic lesions in the post-Sendai era: a single institution experience. HPB Surg. 2015;2015:847837.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Ge PS, Gaddam S, Keach JW, Mullady D, Fukami N, Edmundowicz SA, et al. Predictors for surgical referral in patients with pancreatic cystic lesions undergoing endoscopic ultrasound: results from a large multicenter cohort study. Pancreas. 2016;45:51–7.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Hackert T, Fritz S, Klauss M, Bergmann F, Hinz U, Strobel O, et al. Main-duct intraductal papillary mucinous neoplasm: high cancer risk in duct diameter of 5 to 9  mm. Ann Surg. 2015;262:875–80. discussion 880–1.PubMedCrossRefGoogle Scholar
  161. 161.
    Kang MJ, Jang JY, Lee S, Park T, Lee SY, Kim SW. Clinicopathological meaning of size of main-duct dilatation in intraductal papillary mucinous neoplasm of pancreas: proposal of a simplified morphological classification based on the investigation on the size of main pancreatic duct. World J Surg. 2015;39:2006–13.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Winter JM, Jiang W, Basturk O, Mino-Kenudson M, Fong ZV, Tan WP, et al. Recurrence and survival after resection of small intraductal papillary mucinous neoplasm-associated carcinomas (≤20-mm invasive component): a multi-institutional analysis. Ann Surg. 2016;263:793–801.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Strobel O, Cherrez A, Hinz U, Mayer P, Kaiser J, Fritz S, et al. Risk of pancreatic fistula after enucleation of pancreatic tumours. Br J Surg. 2015;102:1258–66.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Bockhorn M, Uzunoglu FG, Adham M, Imrie C, Milicevic M, Sandberg AA, et al. Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery. 2014;155:977–88.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Ferrone CR, Marchegiani G, Hong TS, Ryan DP, Deshpande V, McDonnell EI, et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann Surg. 2015;261:12–7.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Christians KK, Heimler JW, George B, Ritch PS, Erickson BA, Johnston F, et al. Survival of patients with resectable pancreatic cancer who received neoadjuvant therapy. Surgery. 2016;159:893–900.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    de Rooij T, Klompmaker S, Abu Hilal M, Kendrick ML, Busch OR, Besselink MG. Laparoscopic pancreatic surgery for benign and malignant disease. Nat Rev Gastroenterol Hepatol. 2016;13:227–38.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Mamidanna R, Ni Z, Anderson O, Spiegelhalter SD, Bottle A, Aylin P, et al. Surgeon volume and cancer esophagectomy, gastrectomy, and pancreatectomy: a population-based study in England. Ann Surg. 2016;263:727–32.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Bakens MJ, van Gestel YR, Bongers M, Besselink MG, Dejong CH, Molenaar IQ, et al. Hospital of diagnosis and likelihood of surgical treatment for pancreatic cancer. Br J Surg. 2015;102:1670–5.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Nimptsch U, Krautz C, Weber GF, Mansky T, Grützmann R. Nationwide in-hospital mortality following pancreatic surgery in Germany is higher than anticipated. Ann Surg. 2016;264:1082–90.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. Erratum in: CA Cancer J Clin 2011;61:134.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Binkley CE, Simeone DM. Pancreatic cancer. San Diego, CA: Elsevier; 2004.CrossRefGoogle Scholar
  173. 173.
    Pancreatric Section, British Society of Gastroenterology; Pancreatic Society of Great Britain and Ireland; Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland; Royal College of Pathologists; Special Interest Group for Gastro-Intestinal Radiology. Guidelines for the management of patients with pancreatic cancer, periampullary and ampullary carcinomas. Gut. 2005;54(Suppl 5):v1–v16.Google Scholar
  174. 174.
    Moertel CG, Reitemeier RJ, Hahn RG, Blackburn CM. Fluorometholone (nsc-33001) as a palliative in advanced gastrointestinal carcinoma. Cancer Chemother Rep. 1964;43:25–7.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Kalser MH, Ellenberg SS. Pancreatic cancer. Adjuvant combined radiation and chemotherapy following curative resection. Arch Surg. 1985;120:899–903. Erratum in: Arch Surg 1986;121:1045.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Neoptolemos JP, Stocken DD, Dunn JA, Almond J, Beger HG, Pederzoli P, et al. Influence of resection margins on survival for patients with pancreatic cancer treated by adjuvant chemoradiation and/or chemotherapy in the ESPAC-1 randomized controlled trial. Ann Surg. 2001;234:758–68.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Ghaneh P, Costello E, Neoptolemos JP. Biology and management of pancreatic cancer. Postgrad Med J. 2008;84:478–97.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Burris H, Storniolo AM. Assessing clinical benefit in the treatment of pancreas cancer: gemcitabine compared to 5-fluorouracil. Eur J Cancer. 1997;33(Suppl 1):S18–22.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRefGoogle Scholar
  181. 181.
    Saluja AK, Dudeja V, Banerjee S. Evolution of novel therapeutic options for pancreatic cancer. Curr Opin Gastroenterol. 2016;32:401–7.CrossRefGoogle Scholar
  182. 182.
    Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–61.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N, Frese KK, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut. 2013;62:112–20.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Kultti A, Zhao C, Singha NC, Zimmerman S, Osgood RJ, Symons R, et al. Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. Biomed Res Int. 2014;2014:817613.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A phase II trial of safety, efficacy, and immune activation. Ann Surg. 2011;253:328–35.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Dudeja V, Mujumdar N, Phillips P, Chugh R, Borja-Cacho D, Dawra RK, et al. Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous and independent mechanisms. Gastroenterology. 2009;136:1772–82.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R, et al. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res. 2007;67:616–25.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Chugh R, Sangwan V, Patil SP, Dudeja V, Dawra RK, Banerjee S, et al. A preclinical evaluation of minnelide as a therapeutic agent against pancreatic cancer. Sci Transl Med. 2012;4:156ra139.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Groeschi RT, Gamblin TC. Resection of hilar cholangiocarcinoma. In: Hughes SJ, editor. Operative techniques in hepato-pancreato-biliary surgery. Philadelphia: Wolters Kluwer Health; 2015. p. 72–9.Google Scholar
  190. 190.
    Kawasaki S, Makuuchi M, Miyagawa S, Kakazu T. Radical operation after portal vein embolization for tumor of hilar bile duct. J Am Coll Surg. 1994;178:480–6.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Mansour JC, Aloia TA, Crane CH, Heimbach JK, Nagino M, Vauthey JN. Hilar cholangiocarcinoma: expert consensus statement. HPB (Oxford). 2015;17:691–9.CrossRefGoogle Scholar
  192. 192.
    Abbas S, Sandroussi C. Systematic review and meta-analysis of the role of vascular resection in the treatment of hilar cholangiocarcinoma. HPB (Oxford). 2013;15:492–503.CrossRefGoogle Scholar
  193. 193.
    Chen W, Ke K, Chen YL. Combined portal vein resection in the treatment of hilar cholangiocarcinoma: a systematic review and meta-analysis. Eur J Surg Oncol. 2014;40:489–95.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Wu XS, Dong P, Gu J, Li ML, Wu WG, Lu JH, et al. Combined portal vein resection for hilar cholangiocarcinoma: a meta-analysis of comparative studies. J Gastrointest Surg 2013;17:1107–15.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Yu W, Gu Z, Shi S, Shen N, Zhang Y. Effect evaluation of vascular resection for patients with hilar cholangiocarcinoma: original data and meta-analysis. Cell Biochem Biophys. 2014;69:509–16.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Groeschl RT, Nagorney DM. Portal vein reconstruction during surgery for cholangiocarcinoma. Curr Opin Gastroenterol. 2016;32:216–24.PubMedPubMedCentralGoogle Scholar
  197. 197.
    Ebata T, Nagino M, Kamiya J, Uesaka K, Nagasaka T, Nimura Y. Hepatectomy with portal vein resection for hilar cholangiocarcinoma: audit of 52 consecutive cases. Ann Surg. 2003;238:720–7.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Shimada H, Endo I, Sugita M, Masunari H, Fujii Y, Tanaka K, et al. Hepatic resection combined with portal vein or hepatic artery reconstruction for advanced carcinoma of the hilar bile duct and gallbladder. World J Surg. 2003;27:1137–42.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Strand DS, Cosgrove ND, Patrie JT, Cox DG, Bauer TW, Adams RB, et al. ERCP-directed radiofrequency ablation and photodynamic therapy are associated with comparable survival in the treatment of unresectable cholangiocarcinoma. Gastrointest Endosc. 2014;80:794–804.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Berr F, Wiedmann M, Tannapfel A, Halm U, Kohlhaw KR, Schmidt F, et al. Photodynamic therapy for advanced bile duct cancer: evidence for improved palliation and extended survival. Hepatology. 2000;31:291–8.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Cheon YK, Lee TY, Lee SM, Yoon JY, Shim CS. Long term outcome of photodynamic therapy compared with biliary stenting alone in patients with advanced hilar cholangiocarcinoma. HPB (Oxford). 2012;14:185–93.CrossRefGoogle Scholar
  202. 202.
    Gao F, Bai Y, Ma SR, Liu F, Li ZS. Systematic review: photodynamic therapy for unresectable cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2010;17:125–31.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Steel AW, Postgate AJ, Khorsandi S, Nicholls J, Jiao L, Vlavianos P, et al. Endoscopically applied radiofrequency ablation appears to be safe in the treatment of malignant biliary obstruction. Gastrointest Endosc. 2011;73:149–53.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Mizandari M, Pai M, Xi F, Valek V, Tomas A, Quaretti P, et al. Percutaneous intraductal radiofrequency ablation is a safe treatment for malignant biliary obstruction: feasibility and early results. Cardiovasc Intervent Radiol. 2013;36:814–9.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Wadsworth CA, Westaby D, Khan SA. Endoscopic radiofrequency ablation for cholangiocarcinoma. Curr Opin Gastroenterol. 2013;29:305–11.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Alis H, Sengoz C, Gonenc M, Kalayci MU, Kocatas A. Endobiliary radiofrequency ablation for malignant biliary obstruction. Hepatobiliary Pancreat Dis Int. 2013;12:423–7.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Mensah ET, Martin J, Topazian M. Radiofrequency ablation for biliary malignancies. Curr Opin Gastroenterol. 2016;32:238–43.PubMedPubMedCentralGoogle Scholar
  208. 208.
    Sharaiha RZ, Sethi A, Weaver KR, Gonda TA, Shah RJ, Fukami N, et al. Impact of radiofrequency ablation on malignant biliary strictures: results of a collaborative registry. Dig Dis Sci. 2015;60:2164–9.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Wu TT, Li HC, Li WM, Ao GK, Lin H, Zheng F, et al. Percutaneous intraluminal radiofrequency ablation for malignant extrahepatic biliary obstruction: a safe and feasible method. Dig Dis Sci. 2015;60:2158–63.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Dolak W, Schreiber F, Schwaighofer H, Gschwantler M, Plieschnegger W, Ziachehabi A, et al. Endoscopic radiofrequency ablation for malignant biliary obstruction: a nationwide retrospective study of 84 consecutive applications. Surg Endosc. 2014;28:854–60.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Tal AO, Vermehren J, Friedrich-Rust M, Bojunga J, Sarrazin C, Zeuzem S, et al. Intraductal endoscopic radiofrequency ablation for the treatment of hilar non-resectable malignant bile duct obstruction. World J Gastrointest Endosc. 2014;6:13–9.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Topazian M, Levy MJ, Patel S, Charlton MR, Baron TH. Hepatic artery pseudoaneurysm formation following intraductal biliary radiofrequency ablation. Endoscopy. 2013;45(Suppl 2 UCTN):E161–2.PubMedPubMedCentralGoogle Scholar
  213. 213.
    Tamada K, Ido K, Ueno N, Ichiyama M, Tomiyama T, Nishizono T, et al. Assessment of the course and variations of the hepatic artery in bile duct cancer by intraductal ultrasonography. Gastrointest Endosc. 1996;44:249–56.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Kallis Y, Phillips N, Steel A, Kaltsidis H, Vlavianos P, Habib N, et al. Analysis of endoscopic radiofrequency ablation of biliary malignant strictures in pancreatic cancer suggests potential survival benefit. Dig Dis Sci. 2015;60:3449–55.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Yu J, Zhou X, Li L, Li S, Tan J, Li Y, et al. The long-term effects of bariatric surgery for type 2 diabetes: systematic review and meta-analysis of randomized and non-randomized evidence. Obes Surg. 2015;25:143–58.PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Wang MC, Guo XH, Zhang YW, Zhang YL, Zhang HH, Zhang YC. Laparoscopic roux-en-Y gastric bypass versus sleeve gastrectomy for obese patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Am Surg. 2015;81:166–71.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Brethauer SA, Aminian A, Romero-Talamas H, Batayyah E, Mackey J, Kennedy L, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258:628–36. discussion 636–7.PubMedPubMedCentralGoogle Scholar
  218. 218.
    Nergard BJ, Lindqvist A, Gislason HG, Groop L, Ekelund M, Wierup N, et al. Mucosal glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide cell numbers in the super-obese human foregut after gastric bypass. Surg Obes Relat Dis. 2015;11:1237–46.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Lindegaard KK, Jorgensen NB, Just R, Heegaard PM, Madsbad S. Effects of Roux-en-Y gastric bypass on fasting and postprandial inflammation-related parameters in obese subjects with normal glucose tolerance and in obese subjects with type 2 diabetes. Diabetol Metab Syndr. 2015;7:12.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by International Diabetes Organizations. Diabetes Care. 2016;39:861–77.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Santry HP, Gillen DL, Lauderdale DS. Trends in bariatric surgical procedures. JAMA. 2005;294:1909–17.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50. discussion 350–2.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353:249–54.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Kashyap SR, Bhatt DL, Schauer PR, STAMPEDE Investigators. Bariatric surgery vs. advanced practice medical management in the treatment of type 2 diabetes mellitus: rationale and design of the surgical therapy and medications potentially eradicate diabetes efficiently trial (STAMPEDE). Diabetes Obes Metab. 2010;12:452–4. Erratum in: Diabetes Obes Metab 2010;12:833.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370:2002–13.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Suter M, Calmes JM, Paroz A, Giusti V. A 10-year experience with laparoscopic gastric banding for morbid obesity: high long-term complication and failure rates. Obes Surg. 2006;16:829–35.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122:248–256.e5.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Mingrone G, Rosa G, Di Rocco P, Manco M, Capristo E, Castagneto M, et al. Skeletal muscle triglycerides lowering is associated with net improvement of insulin sensitivity, TNF-alpha reduction and GLUT4 expression enhancement. Int J Obes Relat Metab Disord. 2002;26:1165–72.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Strain GW, Gagner M, Inabnet WB, Dakin G, Pomp A. Comparison of effects of gastric bypass and biliopancreatic diversion with duodenal switch on weight loss and body composition 1-2 years after surgery. Surg Obes Relat Dis. 2007;3:31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Camerini G, Marinari GM, Scopinaro N. A new approach to the fashioning of the gastroenteroanastomosis in laparoscopic standard biliopancreatic diversion. Surg Laparosc Endosc Percutan Tech. 2003;13:165–7.PubMedCrossRefPubMedCentralGoogle Scholar
  233. 233.
    De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem. 2003;278:39124–32.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann Intern Med. 1994;121:416–22.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Penney NC, Kinross J, Newton RC, Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes. 2015;39:1565–74.CrossRefGoogle Scholar

Copyright information

© Indian Association of Surgical Gastroenterology 2018

Authors and Affiliations

  • T. K. Chattopadhyay
    • 1
  1. 1.Department of Surgical HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia

Personalised recommendations