Irradiation Hardening and Indentation Size Effect of the 304NG Stainless Steels After Triple Beam Irradiation

  • Hailiang Ma
  • Ping Fan
  • Qiaoli Zhang
  • Yi Zuo
  • Tongyu Zhu
  • Yongnan Zheng
  • Ali Wen
  • Ruoyu Bai
  • Boqun Cui
  • Lihua Chen
  • Weisheng Jiang
  • Xinzhong Cao
  • Baoyi Wang
  • Shengyun Zhu
  • Daqing Yuan
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

The nuclear grade 304NG stainless steel (SS) has been developed in the past several decades as the new generation of internal material in light water reactors. The irradiation effects of domestic 304NG SS were simulated by the triple ion beam irradiation on the heavy ion, hydrogen and helium triple ion beam irradiation platform at China institute of Atomic Energy. The irradiation experiments were carried out with various doses (6, 15, 30 and 150 dpa at 300 ℃) and temperatures (300, 350, 400, 450 ℃ with 6 dpa). The depth-dependent hardness and elastic modulus of the specimens before and after irradiation were measured by nanoindentation with the continuous stiffness measurement technique. For the specimens irradiated at 300 ℃, the hardness generally increases with the increasing dose. The depth-dependent hardness in the micro-indentation region (indentation depth h > 100 nm) of those specimens with dose less than 30 dpa can be well explained by Nix & Gao formulae of the indentation size effect. For the specimens irradiated at different temperatures, the hardening effect can be observed for all specimens for indentation depth beyond 1 μm and the hardness decreases with increasing irradiation temperature. However, as the irradiation temperature elevates or the dose increases up to 150 dpa, the hardness for the indentation depth h < 500 nm deviates significantly from the projection of the Nix & Gao model. The surface morphology observed by SEM and the S parameters extracted from the slow positron annihilation Doppler broadening indicate that the drastic reduction of hardness those specimens with indentation depth h < 500 nm can be attributed to the change of surface morphology.

Keywords

304NG stainless steel Triple beam irradiation Nanoindentation Indentation size effect Slow positron doppler broadening 

Notes

Acknowledgements

The authors acknowledge the support from the National Science Foundation of China under Grant No. 11005158 and 9112600, and the National major project of science and technology under Grant No. 2012ZX06004-005-005.

References

  1. 1.
    H. Wolfgang, Materials for nuclear plants: from safe design to residual life assessments (Springer, London, 2013)Google Scholar
  2. 2.
    T. Allen, J. Busby, M. Meyer, D. Petti, Materials challenges for nuclear systems. Mater. Today 13, 14 (2010)CrossRefGoogle Scholar
  3. 3.
    Y. Wen, X.-P. Lai, Y.-G. Duan, E. Jiang, G.-F. Li, B. Xu, B. Gong, Research on application performance of nitrogen-containing stainless steel 304NG made in China. Nucl. Power Eng. 28(z1), 40–43 (2007). (in Chinese)Google Scholar
  4. 4.
    Y.J. Wei, D.H. Xia, S.Z. Song, Detection of SCC of 304NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis. Russ. J. Electrochem. 52, 560–575 (2016)CrossRefGoogle Scholar
  5. 5.
    J.E. Alexander, et al., Alternative alloys for BWR piping applications, Final Report, NP-2671-LD, General Electric Company, October (1982)Google Scholar
  6. 6.
    R.W. Weeks, Stress-corrosion cracking in BWR and PWR piping, Proceedings of the International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors: Myrtle Beach, South Carolina, August 22–25, (1983)Google Scholar
  7. 7.
    Q. Luo, Y. Chen, S. Liu, The studies on the corrosion behaviors of 316NG and 304NG nitrogen-containing stainless steels made in China. Procedia Eng. 27, 1560–1567 (2012)CrossRefGoogle Scholar
  8. 8.
    ASTM E521-16, Standard practice for investigating the effects of neutron radiation damage using charged-particle irradiation, ASTM International, West Conshohocken, PA, (2016). www.astm.org
  9. 9.
    G.S. Was, Fundamentals of radiation materials science: metals and alloys (Springer, Berlin, 2007)Google Scholar
  10. 10.
    E.H. Lee, J.D. Hunn, G.R. Rao, R.L. Klueh, L.K. Mansur, Triple ion beam studies of radiation damage in 9Cr-2WVTa ferritic martensitic steel for a high power spallation neutron source. J. Nucl. Mater. 271, 385–390 (1999)CrossRefGoogle Scholar
  11. 11.
    T. Tanaka, K. Oka, S. Ohnuki, S. Yamashita, T. Suda, S. Watanabe, E. Wakai, Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe–Cr ferritic alloys. J. Nucl. Mater. 329–333, 294–298 (2004)CrossRefGoogle Scholar
  12. 12.
    D.-Q. Yuan, Y.-N. Zhen, Y. Zuo, P. Fan, D.-M. Zhou, Q.-L. Zhang, X.-Q. Ma, B.-Q. Cui, L.-H. Chen, W.-S. Jiang, Y.-C. Wu, Q.-Y. Huan, L. Pen, X.-Z. Cao, B.-Y. Wang, L. Wei, S.-Y. Zhu, Synergistic effect of triple ion beams on radiation damage in CLAM steel. Chin. Phys. Lett. 31, 2012–2014 (2014)Google Scholar
  13. 13.
    L.R. Greenwood, F.A. Garner, Hydrogen generation arising from the 59Ni(n, p) reaction and its impact on fission–fusion correlations. J. Nucl. Mater. 233, 1530 (1996)CrossRefGoogle Scholar
  14. 14.
    J. Biersack, L. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl. Instr. Meth. 174, 257 (1980)CrossRefGoogle Scholar
  15. 15.
    J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—The stopping and range of ions in matter (2010). Nucl. Instr. Meth. Phys. Res. B 268, 1818 (2010)CrossRefGoogle Scholar
  16. 16.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
  17. 17.
    B.Y. Wang, X.Z. Cao, R.S. Yu et al., The slow positron beam based on beijing electron-positron collider. Mater. Sci. Forum 445–446, 513–515 (2004)CrossRefGoogle Scholar
  18. 18.
    W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)CrossRefGoogle Scholar
  19. 19.
    G.M. Pharr, E.G. Herbert, Y. Gao, The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271–292 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, A. Kimura, Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation. J. Nucl. Mater. 455, 349–353 (2014)CrossRefGoogle Scholar
  21. 21.
    X. Bai, S. Wu, P.K. Liaw, L. Shao, J. Gigax, Effect of heavy ion irradiation dosage on the hardness of SA508-IV reactor pressure vessel steel. Metals (Basel) 7, 1–11 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, A.H.W. Ngan, Depth dependence of hardness in copper single crystals measured by nanoindentation. Scr. Mater 44, 237–241 (2001)CrossRefGoogle Scholar
  23. 23.
    Z. Wang, Influences of sample preparation on the indentation size effect and nanoindentation pop-in on nickel. Ph.D. dissertation, University of Tennessee, 2012Google Scholar
  24. 24.
    M.J. Puska, R.M. Nieminen, Theory of positrons in solids and on solid surfaces. Rev. Mod. Phys. 66(3), 841–897 (1994)CrossRefGoogle Scholar
  25. 25.
    A. Vehanen, K. Saarinen, P. Hautojärvi, H. Huomo, Profiling multilayer structures with monoenergetic positrons. Phys. Rev. B 35, 4606 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hailiang Ma
    • 1
  • Ping Fan
    • 1
  • Qiaoli Zhang
    • 1
  • Yi Zuo
    • 1
  • Tongyu Zhu
    • 2
  • Yongnan Zheng
    • 1
  • Ali Wen
    • 1
  • Ruoyu Bai
    • 1
  • Boqun Cui
    • 1
  • Lihua Chen
    • 1
  • Weisheng Jiang
    • 1
  • Xinzhong Cao
    • 3
  • Baoyi Wang
    • 3
  • Shengyun Zhu
    • 1
  • Daqing Yuan
    • 1
  1. 1.China Institute of Atomic EnergyBeijingChina
  2. 2.The 404 Company Limited, China National Nuclear CorporationLanzhouChina
  3. 3.Institute of High Energy Physics, CASBeijingChina

Personalised recommendations