Energy-Based Analysis of Effect of Inter-particle Friction on the Shear Behavior of Granular Materials

  • Bei-Bing DaiEmail author
  • Jun Yang
  • Wei Zhang
  • Kai Xu
  • Ai-Guo Li
Conference paper


This paper describes a numerical investigation on the effect of inter-particle friction on the shear behavior of granular materials, with an emphasis placed on an energy-based analysis. The numerical simulation results show that the peak friction angle \( \phi_{p} \) increases with the inter-particle friction angle \( \phi_{\mu } \), and that the constant-volume friction angle \( \phi_{cv} \) increases with \( \phi_{\mu } \) in the low friction region before reaching a plateau stage at the high friction region, with the division point of such two characteristic stages emerging between \( \mu_{s} \) = 0.3 and \( \mu_{s} = 0.5 \). The energy-based analyses indicate that inter-particle friction exerts a profound effect on the energy dissipation and storing of granular assemblies. The inter-particle friction behavior and damping mechanism are the two major means in the consumption of the external work input. Frictional dissipation increases at first with the inter-particle friction coefficient in the low friction region, and then decreases in the high friction region, with the damping consumption exhibiting a reverse variation manner. The mobilized shear strength depends primarily on the energy stored in the normal direction at the contacts, E pn , which demonstrates the same variation mode as the deviatoric stress and constant-volume friction angle, despite that the energy stored in the tangential direction at the contacts, E pt , as well as the mobilized friction coefficient \( \mu_{b} \), shows a monotonic increase with the inter-particle friction coefficient.


Granular materials Inter-particle friction Shear behavior Friction angle Energy dissipation 


  1. 1.
    Bishop, A.W.: Correspondence on shear characteristics of a saturated silt, measured in triaxial compression. Géotechnique 4(1), 43–45 (1954)CrossRefGoogle Scholar
  2. 2.
    Skinner, A.E.: A note on the influence of interparticle friction on the shear strength of a random assembly of spherical particles. Géotechnique 19(1), 150–157 (1969)CrossRefGoogle Scholar
  3. 3.
    Oger, L., Savage, S.B., Corriveau, D., Sayed, M.: Yield and deformation of an assembly of disks subjected to a deviatoric stress loading. Mech. Mater. 27(4), 189–210 (1998)CrossRefGoogle Scholar
  4. 4.
    Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 47(2), 319–329 (2000)Google Scholar
  5. 5.
    Liu, S., Matsuoka, H.: Microscopic interpretation on a stress-dilatancy relationship of granular materials. Soils Found. 43(3), 73–84 (2003)CrossRefGoogle Scholar
  6. 6.
    Kruyt, N.P., Rothenburg, L.: Shear strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. J. Stat. Mech.: Theory Exp. (2006). Paper no. P7021Google Scholar
  7. 7.
    Maeda, K., Hirabayashi, H., Ohmura, A.: Micromechanical influence of grain properties on deformation-failure behavior of granular media by DEM. In: Hyodo, M., Murata, H., Nakata, Y. (eds.) Geomechanics and Geotechnics of Particulate Media, pp. 173–180. Taylor & Francis, UK (2006)Google Scholar
  8. 8.
    Yang, Z.X., Yang, J., Wang, L.Z.: On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis. Granul. Matter 14(3), 433–447 (2012)CrossRefGoogle Scholar
  9. 9.
    Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.Y.: Exploring the influence of interparticle friction on critical state behaviour using DEM. Int. J. Numer. Anal. Meth. Geomech. 38(12), 1276–1297 (2014)CrossRefGoogle Scholar
  10. 10.
    Dai, B.B., Yang, J., Zhou, C.Y.: Observed effects of inter-particle friction and particle size on shear behavior of granular materials. Int. J. Geomech. ASCE 16(1), 04015011 (2016)CrossRefGoogle Scholar
  11. 11.
    Dai, B.B., Yang, J.: Shear strength of assemblies of frictionless particles. Int. J. Geomech. ASCE 17(11), 04017102 (2017)CrossRefGoogle Scholar
  12. 12.
    Suiker, A.S.J., Fleck, N.A.: Frictional collapse of granular media. J. Appl. Mech. 71(3), 350–358 (2004)CrossRefGoogle Scholar
  13. 13.
    Peñe, A.A., Kuzcabi, A., Alonso-Marroquin, F., Herrmann, H.J.: Biaxial test simulations using a packing of polygonal particles. Int. J. Numer. Anal. Meth. Geomech. 32(2), 143–160 (2008)CrossRefGoogle Scholar
  14. 14.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  15. 15.
    Dai, B.B., Yang, J., Zhou, C.Y., Luo, X.D.: DEM investigation on the effect of sample preparation on the shear behavior of granular soil. Particuology 25, 111–121 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bei-Bing Dai
    • 1
    Email author
  • Jun Yang
    • 2
  • Wei Zhang
    • 1
    • 3
  • Kai Xu
    • 4
  • Ai-Guo Li
    • 5
  1. 1.School of Civil EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.Department of Civil EnigneeringThe University of Hong KongHong KongChina
  3. 3.College of Water Conservancy and Civil EngineeringSouth China Agricultural UniversityGuangzhouChina
  4. 4.Nanjing Hydraulic Research InstituteNanjingChina
  5. 5.Shenzhen Geotechnical Investigation and Surveying Institute Co., Ltd.ShenzhenChina

Personalised recommendations