Advertisement

Phytoplasmas: An Update

  • Assunta BertacciniEmail author
  • Ing-Ming Lee
Chapter

Abstract

A summary of the research carried out on phytoplasma-associated diseases 50 years after their discovery is presented. The great majority of this research was devoted to classification and differentiation of these prokaryotes by molecular and bioinformatic tools applied to specific phytoplasma genes. The availability of a robust classification system has greatly facilitated phytoplasma identification leading to an increased knowledge of plant diseases worldwide. Phytoplasma biology study still needs to be improved to allow better management solutions to reduce the impact of these diseases in both agricultural and natural environments.

Keywords

Taxonomy Biology Insect vector Plant disease Epidemiology 

References

  1. Acosta KI, Zamora L, Piñol BE, Fernández A, Chávez A, Flores G, Méndez J, Santos M, Leyva N, Arocha Y (2013) Identification and molecular characterization of phytoplasmas and rickettsia pathogens associated with Bunchy Top Symptom (BTS) and Papaya Bunchy Top (PBT) of papaya in Cuba. Crop Protection 45, 49–56.CrossRefGoogle Scholar
  2. Acosta-Pérez KI, Piñol-Pérez BE, Zamora-Gutierrez L, Quiñones-Pantoja ML, Miranda-Cabrera I, Leyva-López NE, Arocha-Rosete Y (2017) A phytoplasma representative of a new subgroup 16SrI-Z associated with Bunchy Top Symptoms (BTS) on papaya in Cuba. Revista de Protección Vegetal 32, 52–59.Google Scholar
  3. Ahmad JN, Ahmad SJN, Irfan M, Paltrinieri S, Contaldo N, Bertaccini A (2017) Molecular detection, identification, characterization and transmission study of sarsoon phyllody in Punjab – Pakistan associated with phytoplasmas affiliated to the new subgroup 16SrIX-H. European Journal of Plant Pathology 149, 117–125.CrossRefGoogle Scholar
  4. Alma A, Bosco D, Danielli A, Bertaccini A, Vibio M, Arzone A (1997) Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus Ball reared on healthy plants. Insect Molecular Biology 6, 115–121.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Al-Saady NA, Khan AJ, Calari A, Al-Subhi AM, Bertaccini A (2008) ‘Candidatus Phytoplasma omanense’, a phytoplasma associated with witches’ broom of Cassia italica (Mill.) Lam. in Oman. International Journal of Systematic and Evolutionary Microbiology 58, 461–466.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alvarez E, Mejía JF, Llano GA, Loke JB, Calari A, Duduk B, Bertaccini A (2009) Characterization of a phytoplasma associated with frogskin disease in cassava. Plant Disease 93,1139–1145.CrossRefGoogle Scholar
  7. Andersen MT, Liefting LW, Havukkala I, Beever RE (2013) Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics 14, 529.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Angelini E, Bianchi GL, Filippin L, Morassutti C, Borgo M (2007) A new TaqMan method for the identification of phytoplasmas associated with grapevine yellows by a real-time PCR assay. Journal of Microbiological Methods 68, 613–622.PubMedCrossRefGoogle Scholar
  9. Arashida R, Kakizawa S, Ishii Y, Hoshi A, Jung HY, Kagiwada S, Yamaji Y, Oshima K, Namba S (2008) Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology 98, 769–775.PubMedCrossRefGoogle Scholar
  10. Ahrens U, Seemüller E (1992) Detection of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82, 828–832.CrossRefGoogle Scholar
  11. Aldaghi M, Massart S, Dutrecq O, Bertaccini A, Jijakli MH, Lepoivre P (2009) A simple and rapid protocol of crude DNA extraction from apple trees for PCR and real-time PCR detection of ‘Candidatus Phytoplasma mali’. Journal of Virological Methods 156, 96–101.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Arnaud G, Malembic-Maher S, Salar P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X (2007) Multilocus sequence typing confirms the close genetic inter-relatedness between three distinct “flavescence dorée” phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology 73, 4001–4010.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arocha Y, Lopez M, Pinol B, Fernandez M, Picornell B, Almeida R, Palenzuela I, Wilson MR, Jones P (2005) ‘Candidatus Phytoplasma graminis’ and ‘Candidatus Phytoplasma caricae’, two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. International Journal Systematic and Evolutionary Microbiology 55, 2451–2463.CrossRefGoogle Scholar
  14. Arocha Y, Antesana O, Montellano E, Franco P, Plata G, Jones P (2007) ‘Candidatus Phytoplasma lycopersici’, a phytoplasma associated with “hoja de perejil” disease in Bolivia. International Journal Systematic and Evolutionary Microbiology 57, 1704–1710.CrossRefGoogle Scholar
  15. Arocha-Rosete Y, Zunnoon-Khan S, Krukovets I, Crosby W, Scott J, Bertaccini A, Michelutti R (2011) Identification and molecular characterization of the phytoplasma associated with peach rosette-like disease at the Canadian clonal Genebank based on the 16S rRNA gene analysis. Canadian Journal of Plant Pathology 33, 127–134.CrossRefGoogle Scholar
  16. Bai X, Zhang J, Ewing A, Miller SA, Radek AJ, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology 188, 3682–3696.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Barbara DJ, Morton A, Clark MF, Davies DL (2002) Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148, 157–167.PubMedCrossRefGoogle Scholar
  18. Baric S, Kerschbamer C, Dalla-Via J (2006) TaqMan real-time PCR versus four conventional PCR assays for detection of apple proliferation phytoplasma. Plant Molecular Biology Reporter 24, 169–184.CrossRefGoogle Scholar
  19. Barros TSL, Davis RE, Resende RO, Dally EL (2002) Erigeron witches’ broom phytoplasma in Brazil represents new subgroup VII-B in 16S rRNA gene group VII, the ash yellows phytoplasma group. Plant Disease 86, 1142–1148.CrossRefGoogle Scholar
  20. Bekele B, Hodgetts J, Tomlinson J, Boonham N, Nikolić P, Swarbrick P, Dickinson M (2011) Use of a real-time LAMP isothermal assay for detecting 16SrII and -XII phytoplasmas in fruit and we of the Ethiopian Rift Valley. Plant Pathology 60, 345–355.CrossRefGoogle Scholar
  21. Berg M, Davies DL, Clark MF, Vetten J, Maier G, Seemüller E (1999) Isolation of a gene encoding an immunodominant membrane protein gene in the apple proliferation phytoplasma and expression and characterization of the gene product. Microbiology 145, 1937–1943.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Berger J, Dalla Via J, Baric S (2009) Development of a TaqMan allelic discrimination assay for the distinction of two major subtypes of the grapevine yellows phytoplasma “bois noir”. European Journal of Plant Pathology 124, 521–526.CrossRefGoogle Scholar
  23. Bertaccini A (2007) Phytoplasmas: diversity, taxonomy, and epidemiology. Frontiers in Bioscience 12, 673–689.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bertaccini A (2015) Phytoplasma research between past and future: what directions? Phytopathogenic Mollicutes 5(1-Supplement), S1–S4.Google Scholar
  25. Bertaccini A, Davis RE, Lee I-M (1992) In vitro micropropagation for maintenance of mycoplasmalike organisms in infected plant tissues. Horticultural Science 27, 1041–1043.Google Scholar
  26. Bertaccini A, Arzone A, Alma A, Bosco D, Vibio M (1993) Detection of mycoplasmalike organisms in Scaphoideus titanus Ball reared on “flavescence dorée” infected grapevine by dot hybridizations using DNA probes. Phytopathologia Mediterranea 32, 20–24.Google Scholar
  27. Bertaccini A, Bellardi MG, Vibio M (1996) Virus diseases of ornamental shrubs. X. Euphorbia pulcherrima Willd. Infected by viruses and phytoplasmas. Phytopathologia Mediterranea 35, 129–132.Google Scholar
  28. Bertaccini A, Contaldo N, Calari A, Paltrinieri S, Windsor HM, Windsor D (2010) Preliminary results of axenic growth of phytoplasmas from micropropagated infected periwinkle shoots. 18th Congress Iternational Oorganization for Mycoplasmology, Chianciano Terme, Italy 147, 153.Google Scholar
  29. Bertaccini A, Duduk B, Paltrinieri S, Contaldo N (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences 5, 1763.CrossRefGoogle Scholar
  30. Bianco PA, Casati P, Marziliano N (2004) Detection of phytoplasmas associated with grapevine “flavescence dorée” disease using real-time PCR. Journal of Plant Pathology 86, 257–261.Google Scholar
  31. Blomquist CL, Barbara DJ, Davies DL, Clark MF, Kirkpatrick BC (2001) An immunodominant membrane protein gene from the western X-disease phytoplasma is distinct from those of other phytoplasmas. Microbiology 147, 571–580.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Bojan Duduk, Assunta Bertaccini, (2011) Phytoplasma classification: taxonomy based on 16S ribosomal gene, is it enough?. Phytopathogenic Mollicutes 1, 1–13.CrossRefGoogle Scholar
  33. Botti S, Bertaccini A (2006) Phytoplasma infection trough seed transmission: further observations. 16th Congress International Organization for Mycoplasmology, Cambridge, United Kingdom, 76, 113.Google Scholar
  34. Boudon-Padieu E, Larrue J, Caudwell A (1989) ELISA and dot blot detection of “flavescence dorée” MLO in individual leafhopper vector during latency and inoculative state. Current Microbiology 19, 357–364.CrossRefGoogle Scholar
  35. Cai H, Wei W, Davis RE, Chen H, Zhao Y (2008). Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches’ broom phytoplasma group. International Journal Systematic and Evolutionary Microbiology 58, 1448–1457.CrossRefGoogle Scholar
  36. Calari A, Paltrinieri S, Contaldo N, Sakalieva D, Mori N, Duduk B, Bertaccini A (2011) Molecular evidence of phytoplasmas in winter oilseed rape, tomato and corn seedlings. Bulletin of Insectology 64(Supplement), S157–S158.Google Scholar
  37. Chen KH, Guo JR, Wu XJ, Loi N, Carraro L, Guo HJ, Chen YD, Osler R, Pearson R, Chen TA (1993) Comparison of monoclonal antibodies, DNA probes, and PCR for detection of the grapevine yellows disease agent. Phytopathology 83, 915–922.CrossRefGoogle Scholar
  38. Chen KH, Credi R, Loi N, Maixner M, Chen TA (1994) Identification and grouping of mycoplasmalike organisms associated with grapevine yellows and clover phyllody diseases based on immunological and molecular analyses. Applied and Environmental Microbiology 60, 1905–1913.PubMedPubMedCentralGoogle Scholar
  39. Cheng M, Dong J, Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Laski PJ, Zhang Z, McBeath JH (2015) Group 16SrXII phytoplasma strains, including subgroup 16SrXII-E (‘Candidatus Phytoplasma fragariae’) and a new subgroup, 16SrXII-I, are associated with diseased potatoes (Solanum tuberosum) in the Yunnan and Inner Mongolia regions of China. European Journal of Plant Pathology 142, 305–318.CrossRefGoogle Scholar
  40. Chung BN, Jeong MI (2014) Identification of “stolbur” phytoplasmas in Petunia hybdrida seedlings. Phytopathogenic Mollicutes 4, 5–8.CrossRefGoogle Scholar
  41. Cimerman A, Pacifico D, Salar P, Marzachì C, Foissac X (2009) Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the “stolbur” phytoplasma. Applied Environmental Microbiology 75, 2951–2957.Google Scholar
  42. Conci L, Meneguzzi N, Galdeano E, Torres L, Nome C, Nome S (2005) Detection and molecular characterisation of an alfalfa phytoplasma in Argentina that represents a new subgroup in the 16S rDNA ash yellows group (‘Candidatus Phytoplasma fraxini’). European Journal of Plant Pathology 113, 255–265.CrossRefGoogle Scholar
  43. Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor GD (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathologia Mediterranea 51, 607–617.Google Scholar
  44. Contaldo N, Bertaccini A, Paltrinieri S, Windsor GD, Windsor HM (2013) Cultivation of several phytoplasmas from a micropropagated plant collection. Petria 23, 13–18.Google Scholar
  45. Contaldo N., Satta E, Zambon Y, Paltrinieri S, Bertaccini A (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. Journal of Microbiological Methods 127, 105–110.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Córdova I, Oropeza C, Puch-Hau C, Harrison N, Collí-Rodríguez A, Narvaez M, Nic-Matos G, Reyes C, Sáenz L (2014) A real-time PCR assay for detection of coconut lethal yellowing phytoplasmas of group 16SrIV subgroups -A, -D and -E found in the Americas. Journal of Plant Pathology 96, 343–352.Google Scholar
  47. Crosslin J, Vandemark G, Munyaneza JE (2006) Development of a real-time quantitative PCR for detection of the Columbia Basin potato purple top phytoplasma in plants and beet leafhoppers. Plant Disease 90, 663–667.CrossRefGoogle Scholar
  48. Danet J-L, Bonnet P, Jarausch W, Carraro L, Skoric D, Labonne G, Foissac X (2007) Imp and secY, two new markers for MLST (multilocus sequence typing) in the 16SrX phytoplasma taxonomic group. Bulletin of Insectology 60, 339–340.Google Scholar
  49. Davis RE, Dally EL, Gundersen DE, Lee I-M, Habili N (1997) ‘Candidatus Phytoplasma australiense’, a new phytoplasma taxon associated with Australian grapevine yellows. International Journal of Systematic Bacteriology 47, 262–269.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Davis RE, Jomantiene R, Dally EL, Wolf TK (1998) Phytoplasmas associated with grapevine yellows in Virginia belong to group 16SrI, subgroup A (tomato big bud phytoplasma subgroup), and group 16SrIII, new subgroup I. Vitis 37, 131–137.Google Scholar
  51. Davis RE, Dally EL, Converse RH (2001) Molecular identification of a phytoplasma associated with witches’ broom disease of black raspberry in Oregon and its classification in group 16SrIII, new subgroup Q. Plant Disease 85, 1121.CrossRefGoogle Scholar
  52. Davis RE, Dally E, Zhao Y, Lee I-M, Jomantiene R, Detweiler AJ, Putnam ML (2010) First report of a new subgroup 16SrIX-E (‘Candidatus Phytoplasma phoenicium’-related) phytoplasma associated with juniper witches’ broom disease in Oregon, USA. Plant Pathology 59, 1161.Google Scholar
  53. Davis RE, Zhao Y, Dally EL, Jomantiene R, Lee I-M, Wei W, Kitajima EW (2012) ‘Candidatus Phytoplasma sudamericanum’, a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.). International Journal Systematic and Evolutionary Microbiology 62, 984–989.CrossRefGoogle Scholar
  54. Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R, Douglas SM (2013) ‘Candidatus Phytoplasma pruni’, a novel taxon associated with Xdisease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. International Journal Systematic and Evolutionary Microbiology 63, 766–776.CrossRefGoogle Scholar
  55. Davis RE, Harrison NA, Zhao Y, Wei W, Dally EL (2016) ‘Candidatus Phytoplasma hispanicum’, a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus. International Journal Systematic and Evolutionary Microbiology 66, 3463–3467.CrossRefGoogle Scholar
  56. Davis RE, Zhao Y, Wei W, Dally EL, Lee I-M (2017) ‘Candidatus Phytoplasma luffae’, a novel taxon associated with witches’ broom disease of loofah, Luffa aegyptica Mill. International Journal of Systematic and Evolutionary Microbiology 67, 3127–3133.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma or PLT grouplike microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Annals Phytopathological Society of Japan 33, 259–266.CrossRefGoogle Scholar
  58. Duduk B, Mejia JF, Calari A, Bertaccini A (2008) Identification of 16SrIX group phytoplasmas infecting Colombian periwinkles and molecular characterization on several genes. 17th Congress Intaernational Organization for Mycoplasmology, Tienjin, China, 112, 83.Google Scholar
  59. Esmailzadeh Hosseini SA, Salehi M, Mirchenari SM, Contaldo N, Paltrinieri S, Bertaccini A (2016) Occurrence of a ‘Candidatus Phytoplasma omanense’-related strain in bindweed showing a witches’ broom disease in Iran. Phytopathogenic Mollicutes 6, 63–68.CrossRefGoogle Scholar
  60. Faggioli F, Pasquini G, Lumia V, Campobasso G, Widmer TL, Quimby PC (2004) Molecular identification of a new member of the clover proliferation phytoplasma group (16SrVI) associated with yellow starthistle virescence in Italy. European Journal of Plant Pathology 110, 353–360.CrossRefGoogle Scholar
  61. Fernández FD, Meneguzzi NG, Guzmán FA, Kirschbaum DS, Conci VC, Nome CF, Conci LR (2015) Detection and identification of a novel 16SrXIII subgroup phytoplasma associated with strawberry red leaf disease in Argentina. International Journal of Systematic and Evolutionary Microbiology 65, 2741–2747.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Fernández FD, Galdeano E, Kornowski MV, Arneodo JD, Conci LR (2016) Description of ‘Candidatus Phytoplasma meliae’, a phytoplasma associated with Chinaberry (Melia azedarach L.) yellowing in South America. International Journal of Systematic and Evolutionary Microbiology 66, 5244–5251.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Flôres D, Amaral Mello AO, Pereira TBC, Rezende JAM, Bedendo IP ( 2015) A novel subgroup 16SrVII-D phytoplasma identified in association with erigeron witches’ broom. International Journal of Systematic and Evolutionary Microbiology 65, 2761–2765.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Fránová J, de Sousa E, Mimoso C, Cardoso F, Contaldo N, Paltrinieri S, Bertaccini A (2016) Multigene characterization of a new ‘Candidatus Phytoplasma rubi’-related strain associated with blackberry witches’ broom in Portugal. International Journal of Systematic and Evolutionary Microbiology 66, 1438–1446.Google Scholar
  65. Galdeano E, Guzmán FA, Fernández F, Conci RG (2013) Genetic diversity of 16SrIII group phytoplasmas in Argentina. Predominance of subgroups 16SrIII-J and B and two new subgroups 16SrIII-W and X. European Journal of Plant Pathology 137, 753–764.CrossRefGoogle Scholar
  66. Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C (2011) The major antigenic membrane protein of ‘Candidatus Phytoplasma asteris’ selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 6, e22571.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Griffiths HM, Sinclair WA, Smart CD, Davis RE (1999) The phytoplasma associated with ash yellows and lilac witches’ broom: ‘Candidatus Phytoplasma fraxini’. International Journal of Systematic Bacteriology 49, 1605–1614.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gundersen DE, Lee I-M, Rehner SA, Davis RE, Kingsbury DT (1994) Phylogeny of mycoplasmalike organisms (Phytoplasmas): a basis for their classification. Journal of Bacteriology 176, 5244–5254.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gundersen DE, Lee I-M, Schaff DA, Harrison NA, Chang CJ, Davis RE, Kingsbury DT (1996) Genomic diversity among phytoplasma strains in 16S rRNA group I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). International Journal of Systematic Bacteriology 46, 64–75.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hanboonsong Y, Choosai C, Panyim S, Damak S (2002) Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumura). Insect Molecular Biology 11, 97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Harrison NA, Richardson PA, Kramer JB, Tsai JH (1994) Detection of the mycoplasma-like organism associated with lethal yellowing disease of palms in Florida by polymerase chain reaction. Plant Pathology 43, 998–1008.CrossRefGoogle Scholar
  72. Harrison NA, Womack M, Carpio ML (2002) Detection and characterization of a lethal yellowing (16SrIV) group phytoplasma in Canary Island date palms affected by lethal decline in Texas. Plant Disease 86, 676–681.Google Scholar
  73. Harrison NA, Helmick EE, Elliott ML (2008) Lethal yellowing-type diseases of palms associated with phytoplasmas newly identified in Florida, USA. Annals of Applied Biology 153, 85–94.Google Scholar
  74. Harrison NA, Davis RE, Oropeza C, Helmick EE, Narváez M, Eden-Green S, Dollet M, Dickinson M (2014) ‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. International Journal of Systematic and Evolutionary Microbiology 64, 1890–1899.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hiruki C, Wang KR (2004) Clover proliferation phytoplasma: ‘Candidatus Phytoplasma trifolii’. International Journal of Systematic and Evolutionary Microbiology 54, 1349–1353.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ho K, Tsai C, Chung T (2001) Organization of ribosomal RNA genes from a loofah witches’ broom phytoplasma. DNA and Cell Biology 20, 115–122.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology 58, 1826–1837.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Hodgetts J, Boonham N, Mumford R, Dickinson M (2009) Panel of 23S rRNA gene-based real-time PCR assays for improved universal and group specific detection of phytoplasmas. Applied and Environmental Microbiology 75, 2945–2950.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hong Y, Davies DL, Wezel RV, Ellerker BE, Morton A, Barbara D (2001) Expression of the immunodominant membrane protein of chlorantie-aster yellows phytoplasma in Nicotiana benthamiana from a potato virus X-based vector. Acta Horticulturae 550, 409–415.Google Scholar
  80. Hogenhout SA, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology 9, 403–423.PubMedCrossRefGoogle Scholar
  81. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences USA 106, 6416–6421.CrossRefGoogle Scholar
  82. Hren M, Boben J, Rotter A, Kralj P, Gruden K, Ravnikar M (2007) Real-time PCR detection systems for “flavescence dorée” and “bois noir” phytoplasmas in grapevine: comparison with conventional PCR detection and application in diagnostics. Plant Pathology 56, 785–796.CrossRefGoogle Scholar
  83. Ikten C, Ustun R, Catal M, Yol E, Uzun B (2016) Multiplex real-time qPCR assay for simultaneous and sensitive detection of phytoplasmas in sesame plants and insect vectors. PLOS One 11, e0155891.PubMedPubMedCentralCrossRefGoogle Scholar
  84. IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonise plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology 54, 1243–1255.CrossRefGoogle Scholar
  85. Ishii Y, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Oshima K, Namba S (2009) In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology 155, 2058–2067.PubMedCrossRefGoogle Scholar
  86. Ishiie T, Doi Y, Yora K, Asuyama H (1967) Suppressive effects of antibiotics of tetracycline group on symptom developement of mulberry dwarf disease. Annals Phytopathological Society of Japan 33, 267–275.CrossRefGoogle Scholar
  87. Jacobs KA, Lee I-M, Griffiths HM, Miller FD Jr, Bottner KD (2003) A new member of the clover proliferation phytoplasma group (16SrVI) associated with elm yellows in Illinois. Plant Disease 87, 241–246.Google Scholar
  88. Jarausch W, Lansac M, Dosba F (1996) Long-term maintenance of nonculturable apple-proliferation phytoplasmas in their micropropagated natural host plant. Plant Pathology 45, 778–786.CrossRefGoogle Scholar
  89. Jomantiene R, Davis RE (2006) Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. FEMS Microbiology Letters 255, 59–65.PubMedCrossRefGoogle Scholar
  90. Jomantiene R, Davis RE, Maas J, Dally EL (1998) Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16S rRNA and ribosomal protein gene operon sequences. International Journal of Systematic Bacteriology 48, 269–277.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Jomantiene R, Maas JL, Takeda F, Davis RE (2002) Molecular identification and classification of strawberry phylloid fruit phytoplasma in group 16SrI, new subgroup. Plant Disease 86, 920.CrossRefGoogle Scholar
  92. Jomantiene R, Zhao Y, Davis RE (2007) Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. DNA Cell Biology 26, 557–564. Erratum 26, 695.Google Scholar
  93. Jung H-Y, Sawayanagi T, Kakizawa S, Nishigawa H, Miyata S, Oshima K, Ugaki M, Joon-Tak L, Namba S (2002) ‘Candidatus Phytoplasma castaneae’, a novel phytoplasma taxon associated with chestnut witches’ broom disease. International Journal of Systematic and Evolutionary Microbiology 52, 1543–1549.PubMedPubMedCentralGoogle Scholar
  94. Jung H-Y, Sawayanagi T, Kakizawa S, Nishigawa H, Wei W, Oshima K, Miyata S, Ugaki M, Hibi T, Namba S (2003a) ‘Candidatus Phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches’ broom disease. International Journal of Systematic and Evolutionary Microbiology 53, 1037–1041.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Jung H-Y, Sawayanagi T, Wongkaew P, Kakizawa S, Nishigawa H, Wei W, Oshima K, Miyata S, Ugaki M, Hibi T, Namba S (2003b) ‘Candidatus Phytoplasma oryzae’, a novel phytoplasma taxon associated with rice yellow dwarf disease. International Journal of Systematic and Evolutionary Microbiology 53, 1925–1929.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Kakizawa S, Oshima K, Kuboyama T, Nishigawa H, Jung H-Y, Sawayanagi T, Tsuchizaki T, Miyata S, Ugaki M, Namba S (2001) Cloning and expression analysis of phytoplasma protein translocation genes. Molecular Plant-Microbe Interactions 14, 1043–1050.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Kakizawa S, Oshima K, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Tanaka M, Miyata S, Ugaki M, Namba S (2004) Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135–142.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Kakizawa S, Oshima K, Ishii Y, Hoshi A, Maejima K, Jung H-Y, Yamaji Y, Namba S (2009) Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiology Letters 293, 91–101.CrossRefGoogle Scholar
  99. Kawakita H, Saiki T, Wei W, Mitsuhashi W, Watanabe K, Sato M (2000) Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology 90, 909–914.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Khan AJ, Botti S, Paltrinieri S, Al-Subhi AM, Bertaccini A (2002) Phytoplasmas in alfalfa seedlings: infected or contaminated seeds? 13th Congress International Organization for Mycoplasmoloy, Vienna, Austria, 6.Google Scholar
  101. Kirkpatrick BC, Stenger BC, Morris TJ, Purcell AH (1987) Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238, 197–200.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Kogovšek P, Hodgetts J, Hall J, Prezelj N, Nikolić P, Mehle N, Lenarčič R, Rotter A, Dickinson M, Boonham N, Dermastia M, Ravnikar M (2015) LAMP assay and rapid sample preparation method for on-site detection of “flavescence dorée” phytoplasma in grapevine. Plant Pathology 64, 286–296.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdo AM, Reinhardt R, Seemüller E (2008) The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 9, 306.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. The Scientific World Journal [dx.doi.org/ https://doi.org/10.1100/2012/185942]CrossRefGoogle Scholar
  105. Kuboyama T, Huang C, Lu X, Sawayanagi T, Kanazawa T, Kagami T, Matsuda I, Tsuchizaki T, Namba S (1998) A plasmid isolated from phytopathogenic onion yellows phytoplasma and its heterogeneity in the pathogenic phytoplasma mutant. Molecular Plant Microbe Interactions 11, 1031–1037.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Lai F, Song CS, Ren ZG, Lin CL, Xu QC, Li Y, Piao CG, Yu SS, Guo MW, Tian GZ (2014) Molecular characterization of a new member of the 16SrV group of phytoplasma associated with Bischofia polycarpa (Levl.) Airy Shaw witches’ broom disease in China by a multiple gene-based analysis. Australasian Plant Pathology 43, 557–569.CrossRefGoogle Scholar
  107. Lee I-M, Davis RE, Chen T-A, Chiykowski LN, Fletcher J, Hiruki C, Schaff DA (1992) A genotype-base system for identification and classification of mycoplasmalike organisms (MLOs) in the aster yellows MLO strain cluster. Phytopathology 82, 977–986.CrossRefGoogle Scholar
  108. Lee I-M, Hammond RW, Davis RE, Gundersen DE (1993a) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83, 834–842.CrossRefGoogle Scholar
  109. Lee I-M, Davis RE, Hsu H-T (1993b) Differentiation of strains in the aster yellows mycoplasmalike organisms strain cluster by serological assay with monoclonal antibodies. Plant Disease 77, 815–817.CrossRefGoogle Scholar
  110. Lee I-M, Gundersen DE, Hammond RW, Davis RE (1994) Use of mycoplasmalike organism (MLO) group-specific oligonucleotide primers for nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology 84, 559–566.CrossRefGoogle Scholar
  111. Lee I-M, Bertaccini A, Vibio M, Gundersen DE (1995) Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology 85, 728–735.CrossRefGoogle Scholar
  112. Lee I-M, Klopmeyer M, Bartoszyk IM, Gundersen-Rindal DE, Chou T, Thomson KL, Eisenreich R (1997) Phytoplasma induced free-branching in commercial poinsettia cultivars. Nature Biotechnology 15, 178–182.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998a) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology 48, 1153–1169.Google Scholar
  114. Lee I-M, Gundersen-Rindal DE, Bertaccini A (1998b) Phytoplasma: ecology and genomic diversity. Phytopathology 88, 1359–1366.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Lee I-M, Martini M, Bottner KD, Dane RA, Black MC, Troxclair N (2003) Ecological implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology 93, 1368–1377.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Lee I-M, Martini M, Marcone C, Zhu SF (2004a) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. International Journal of Systematic and Evolutionary Microbiology 54, 337–347.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Lee I-M, Gundersen-Rindal D, Davis RE, Bottner KD, Marcone C, Seemüller E (2004b) ‘Candidatus Phytoplasma asteris’, a novel taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology 54, 1037–1048.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Lee I-M, Bottner KD, Secor G, Rivera-Varas V (2006a) ‘Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. International Journal of Systematic and Evolutionary Microbiology 56, 1593–1597.PubMedCrossRefGoogle Scholar
  119. Lee I-M, Zhao Y, Bottner KD (2006b) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes 20, 87–91.Google Scholar
  120. Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Harrison NA (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. International Journal of Systematic and Evolutionary Microbiology 60, 2887–2897.PubMedCrossRefGoogle Scholar
  121. Lee I-M, Bottner-Parker KD, Zhao Y, Villalobos W, Moreira L (2011) ‘Candidatus Phytoplasma costaricanum’ a novel phytoplasma associated with an emerging disease in soybean (Glycine max). International Journal of Systematic and Evolutionary Microbiology 61, 2822–2826.PubMedCrossRefGoogle Scholar
  122. Lee I-M, Bottner-Parker KD, Zhao Y, Bertaccini A, Davis RE (2012) Differentiation and classification of phytoplasmas in the pigeon pea witches’ broom group (16SrIX): an update based on multiple gene sequence analysis. International Journal of Systematic and Evolutionary Microbiology 62, 2279–2285.PubMedCrossRefGoogle Scholar
  123. Lee I-M, Polashock J, Bottner-Parker KD, Bagadia PG, Rodriguez-Saona C, Zhao Y, Davis RE (2014) New subgroup 16SrIII-Y phytoplasmas associated with false-blossom diseased cranberry (Vaccinium macrocarpon) plants and with known and potential insect vectors in New Jersey. European Journal of Plant Pathology 139, 393–400.CrossRefGoogle Scholar
  124. Lee ME, Grau CR, Lukaesko LA, Lee I-M (2002) Identification of aster yellows phytoplasmas in soybean in Wisconsin based on RFLP analysis of PCR-amplified products (16S rDNAs). Canadian Journal of Plant Pathology 24, 125–130.CrossRefGoogle Scholar
  125. Lenz O, Markov J, Sarkisov T, Franova J, Pribylova J (2015) Discrimination of phytoplasmas using an oligonucleotide microarray targeting rps3, rpl22, and rps19 genes. Crop Protection 70, 47–52.CrossRefGoogle Scholar
  126. Lherminier J, Prensier G, Boudon-Padieu E, Caudwell A (1990) Immunolabeling of grapevine “flavescence dorée” MLO in salivary glands of Euscelidius variegatus: a light and electron microscopy study. Journal of Histochemistry and Cytochemistry 38, 79–85.PubMedCrossRefGoogle Scholar
  127. Lin CP, Chen TA (1985) Monoclonal antibodies against the aster yellows agent. Science 227, 1233–1235.PubMedCrossRefGoogle Scholar
  128. Linck O, Krüger E, Reineke A (2017) A multiplex TaqMan qPCR assay for sensitive and rapid detection of phytoplasmas infecting Rubus species. PLoS One 12, e0177808.PubMedPubMedCentralCrossRefGoogle Scholar
  129. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R, Nicolaisen M, Hogenhout S (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157, 831–841.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Maejima K, Oshima K, Namba S (2014) Exploring the phytoplasmas, plant pathogenic bacteria. Journal of General Plant Pathology 80, 210–221.CrossRefGoogle Scholar
  131. Mafia RG, Barreto RW, Vanetti CA, Hodgetts J, Dickinson M, Alfenas AC (2007) A phytoplasma is associated with witches’ broom disease of Tabebuia pentaphylla in Brazil. New Disease Reports 15, 49.Google Scholar
  132. Makarova OV, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A, Nicolaisen M (2012) DNA barcoding for universal identification of ‘Candidatus Phytoplasmas’ using a fragment of the elongation factor Tu gene. PLoS One 7, e52092.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Malembic-Maher S, Salar P, Filippin L, Carle P, Angelini E, Foissac X (2011) Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. International Journal of Systematic and Evolutionary Microbiology 61, 2129–2134.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Manimekalai R, Nair S, Soumya VP, Roshna OM, Thomas GV (2011) Real-time PCR technique-based detection of coconut root (wilt) phytoplasma. Current Science 101, 1209–1213.Google Scholar
  135. Marcone C, Neimark H, Ragozzino A, Lauer U, Seemüller E (1999) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89, 805–810.PubMedCrossRefGoogle Scholar
  136. Marcone C, Lee I-M, Davis RE, Ragozzino A, Seemüller E (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. International Journal of Systematic and Evolutionary Microbiology 50, 1703–1713.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Marcone C, Gibb KG, Streten C, Schneider B (2003a) ‘Candidatus Phytoplasma spartii’, ‘Candidatus Phytoplasma rhamni’ and ‘Candidatus Phytoplasma allocasuarinae’, respectively associated with spartium witches’ broom, buckthorn witches’ broom and allocasuarina yellows diseases. International Journal of Systematic and Evolutionary Microbiology 54, 1025–1029.CrossRefGoogle Scholar
  138. Marcone C, Schneider B, Seemüller E (2003b) ‘Candidatus Phytoplasma cynodontis’, the phytoplasma associated with Bermuda grass white leaf disease. International Journal of Systematic and Evolutionary Microbiology 54, 1077–1082.CrossRefGoogle Scholar
  139. Martinez RT, Narvaez M, Fabre S, Harrison NA, Oropeza C, Dollet M, Hichez E (2008) Coconut lethal yellowing on the southern coast of the Dominican Republic is associated with a new 16SrIV group phytoplasma. Plant Pathology 57, 366–376.CrossRefGoogle Scholar
  140. Martini M, Murari E, Mori N, Bertaccini A (1999) Identification and epidemic distribution of two “flavescence dorée”-related phytoplasmas in Veneto (Italy). Plant Disease 83, 925–930.CrossRefGoogle Scholar
  141. Martini M, Botti S, Marcone C, Marzachì C, Casati P, Bianco PA, Benedetti R, Bertaccini A (2002) Genetic variability among “flavescence dorée” phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes 16, 197–208.PubMedCrossRefGoogle Scholar
  142. Martini M, Lee I-M, Bottner KD, Zhao Y, Botti S, Bertaccini A, Harrison NA, Carraro L, Marcone C, Khan J, Osler R (2007) Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology 57, 2037–2051.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Martini M, Marcone C, Mitrović J, Maixner M, Delić D, Myrta A, Ermacora P, Bertaccini A, Duduk B (2012) ‘Candidatus Phytoplasma convolvuli’, a new phytoplasma taxon associated with bindweed yellows in four European countries. International Journal of Systematic and Evolutionary Microbiology 62, 2910–2915.PubMedCrossRefGoogle Scholar
  144. Melo L, Silva E, Flôres D, Ventura J, Costa H, Bedendo I (2013) A phytoplasma representative of a new subgroup, 16SrXIII-E, associated with papaya apical curl necrosis. European Journal of Plant Pathology 137, 445–450.CrossRefGoogle Scholar
  145. Mergenthaler E, Viczian O, Fodor M, Sule S (2001) Isolation and expression of an immunodominant membrane protein gene of the ESFY phytoplasma for antiserum production. Acta Horticulturae 550, 355–360.Google Scholar
  146. Mitrović J, Kakizawa S, Duduk B, Oshima K, Namba S, Bertaccini A (2011) The cpn60 gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Annals of Applied Biology 159, 41–48.CrossRefGoogle Scholar
  147. Mitrović J, Siewert C, Duduk B, Hecht J, Mölling K, Broecker F, Beyerlein P, Büttner C, Bertaccini A, Kube M (2014) Generation and analysis of draft sequences of “stolbur” phytoplasma from multiple displacement amplification templates. Journal of Molecular Microbiology and Biotechnology 24, 1–11.PubMedCrossRefGoogle Scholar
  148. Mitrovic J, Smiljković M, Seemüller E, Reinhardt R, Hüttel B, Büttner C, Bertaccini A, Kube M, Duduk B (2015) Differentiation of ‘Candidatus Phytoplasma cynodontis’ based on 16S rRNA and groEL genes and identification of a new subgroup, 16SrXIV-C. Plant Disease 99, 1578–1583.CrossRefGoogle Scholar
  149. Miyazaki A, Shigaki T, Koinuma H, Iwabuchi N, Rauka GB, Kembu A, Saul J, Watanabe K, Nijo T, Maejima K, Yamaji Y, Namba S (2018) ‘Candidatus Phytoplasma noviguineense’, a novel taxon associated with bogia coconut syndrome and banana wilt disease on the island of New Guinea. International Journal of Systematic and Evolutionary Microbiology 68, 170–175.PubMedCrossRefGoogle Scholar
  150. Molino Lova M, Quaglino F, Abou-Jawdah Y, Choueiri E, Sobh H, Casati P, Tedeschi R, Alma A, Bianco PA (2011) Identification of new 16SrIX subgroups, -F and -G, among ‘Candidatus Phytoplasma phoenicium’ strains infecting almond, peach and nectarine in Lebanon. Phytopathologia Mediterranea 50, 273–282.Google Scholar
  151. Montano HG, Davis RE, Dally EL, Pimentel JP, Brioso PST (2000) Identification and phylogenetic analysis of a new phytoplasma from diseased chayote in Brazil. Plant Disease 84, 429–436.CrossRefGoogle Scholar
  152. Montano HG, Davis RE, Dally EL, Hogenhout S, Pimentel PP, Brioso PST (2001) ‘Candidatus Phytoplasma brasiliense’, a new phytoplasma taxon associated with hibiscus witches’ broom disease. International Journal of Systematic and Evolutionary Microbiology 51, 1109–1118.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Monti M, Martini M, Tedeschi R (2013) EvaGreen real-time PCR protocol for specific ‘Candidatus Phytoplasma mali’ detection and quantification in insects. Molecular and Cellular Probes 27, 129–136.PubMedCrossRefGoogle Scholar
  154. Naderali N, Nejat N, Vadamalai G, Davis R, Wei W, Harrison N, Kong L, Kadir J, Tan Y, Zhao Y (2017) ‘Candidatus Phytoplasma wodyetiae’, a new taxon associated with yellow decline disease of foxtail palm (Wodyetia bifurcata) in Malaysia. International Journal of Systematic and Evolutionary Microbiology 67, 3765–3772.PubMedCrossRefGoogle Scholar
  155. Namba S, Kato S, Iwanami S, Oyaizu H, Shiozawa H, Tsuchizaki T (1993) Detection and differentiation of plant-pathogenic mycoplasmalike organisms using polymerase chain reaction. Phytopathology 83, 786–791.CrossRefGoogle Scholar
  156. Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Sidek Z, Dickinson M (2010) Development of a TaqMan real-time PCR for sensitive detection of the novel phytoplasma associated with coconut yellow decline in Malaysia. Journal of Plant Pathology 92, 769–773.Google Scholar
  157. Nejat N, Vadamalai G, Davis RE, Harrison NA, Sijam K, Dickinson M, Abdullah SN, Zhao Y (2013) ‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). International Journal of Systematic and Evolutionary Microbiology 63, 540–548.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Neriya Y, Maejima K, Nijo T, Tomomitsu T, Yusa A, Himeno M, Netsu O, Hamamoto H, Oshima K, Namba S (2014) Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts. FEMS Microbiology Letters 361, 115–122.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Nicolaisen M, Bertaccini A (2007) An oligonucleotide microarray based assay for identification of phytoplasma 16S ribosomal groups. Plant Pathology 56, 332–336.CrossRefGoogle Scholar
  160. Nicolaisen M, Contaldo N, Makarova O, Paltrinieri S, Bertaccini A (2011) Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants. Bulletin of Insectology 64(Supplement), S35–S36.Google Scholar
  161. Obura E, Masiga D, Wachira F, Gurja B, Khan ZR (2011) Detection of phytoplasma by loop-mediated isothermal amplification of DNA (LAMP). Journal of Microbiological Methods 84, 312–316.PubMedCrossRefGoogle Scholar
  162. Oshima K, Kakizawa S, Nishigawa H, Kuboyama T, Miyata S, Ugaki M, Namba A (2001) A plasmid of phytoplasma encodes a unique replication protein having both plasmid and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination. Virology 285, 270–277.PubMedCrossRefGoogle Scholar
  163. Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36, 27–29.PubMedCrossRefGoogle Scholar
  164. Oshima K, Kakizawa S, Arashida R, Ishii Y, Hoshi A, Hayashi Y, Kawagida S, Namba S (2007) Presence of two glycolityc gene clusters in a severe pathogenic line of ‘Candidatus Phytoplasma asteris’. Molecular Plant Pathology 8, 481–489.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Himeno M, Minato N, Miura C, Shiraishi T, Yamaji Y, Namba S (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. PLoS One 6, e23242.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Padovan A, Gibb K, Persley D (2000) Association of ‘Candidatus Phytoplasma australiense’ 38 with green petal and lethal yellows diseases in strawberry. Plant Pathology 49, 362–369.CrossRefGoogle Scholar
  167. Pelletier C, Salar P, Gillet J, Cloquemin G, Very P, Foissac X, Malembic-Maher S (2009) Triplex real-time PCR assay for sensitive and simultaneous detection of grapevine phytoplasmas of the 16SrV and 16SrXII-A groups with an endogenous analytical control. Vitis 48, 87–95.Google Scholar
  168. Perez-López E, Luna-Rodríguez M, Olivier CY, Dumonceaux TJ (2016) The underestimated diversity of phytoplasmasin Latin America. International Journal of Systematic and Evolutionary Microbiology 66, 492–513.PubMedCrossRefGoogle Scholar
  169. Quaglino F, Zhao Y, Bianco PA, Wei W, Casati P, Durante G, Davis RE (2009) New 16Sr subgroups and distinct single nucleotide polymorphism lineages among grapevine “bois noir” phytoplasma populations. Annals of Applied Biology 154, 279–289.CrossRefGoogle Scholar
  170. Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W, Davis RE (2013) ‘Candidatus Phytoplasma solani’, a novel taxon associated with “stolbur”- and “bois noir”-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology 63, 2879–2894.Google Scholar
  171. Rekab D, Carraro L, Schneider B, Seemüller E, Chen J, Chang CJ, Locci R, Firrao G (1999) Geminivirus-related extrachromosomal DNAs of the X-clade phytoplasmas share high sequence similarity. Microbiology 145, 1453–1459.PubMedCrossRefGoogle Scholar
  172. Saccardo F, Martini M, Palmano S, Ermacora P, Scortichini M, Loi N, Firrao G (2012) Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology 158, 2805–2814.PubMedCrossRefGoogle Scholar
  173. Saeed E, Sarindu N, Davies DL, Clark MF, Roux J, Cousin MT (1994) Use of polyclonal antibodies to identify mycoplasma-like organisms (MLOs) from the Sudan and from Thailand. Journal of Phytopathology 142, 345–349.CrossRefGoogle Scholar
  174. Šafárová D, Zemánek T, Válová P, Navrátil M (2016) ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop]. International Journal of Systematic and Evolutionary Microbiology 66, 1745–1753.PubMedCrossRefGoogle Scholar
  175. Salehi M, Izadpanah K, Siampour M, Taghizadeh M (2009) Molecular characterization and transmission of Bermuda grass white leaf phytoplasma in Iran. Journal of Plant Pathology 91, 655–661.Google Scholar
  176. Samad A, Ajayakumar PV, Shasany AK, Gupta MK, Alam M, Rastogi S (2008) Occurrence of a clover proliferation (16SrVI) group phytoplasma associated with little leaf disease of Portulaca grandiflora in India. Plant Disease 92, 832.CrossRefGoogle Scholar
  177. Santos-Cervantes ME, Chávez-Medina JA, Méndez-Lozano J, Leyva-López NE (2008) Detection and molecular characterization of two little leaf phytoplasma strains associated with pepper and tomato diseases in Guanajuato and Sinaloa, Mexico. Plant Disease 92, 1007–1011.CrossRefGoogle Scholar
  178. Santos-Cervantes ME, Chávez-Medina JA, Acosta-Pardini J, Flores-Zamora GL, Méndez-Lozano J, Leyva-López NE (2010) Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Disease 94, 388–395.CrossRefGoogle Scholar
  179. Satta E, Contaldo N, Paltrinieri S, Bertaccini A (2016) Biological and molecular proof of phytoplasma seed transmission in corn. 21th Congress of the International Organization for Mycoplasmology, Brisbane, Australia 61, 65–66.Google Scholar
  180. Satta E, Nanni IM, Contaldo N, Collina M, Poveda JB, Ramírez AS, Bertaccini A (2017) General phytoplasma detection by a q-PCR method using mycoplasma primers. Molecular and Cellular Probes 35, 1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Sawayanagi T, Horikoshi N, Kanehira T, Shinohara M, Bertaccini A, Cousin M-T, Hiruki C, Namba S (1999) ‘Candidatus Phytoplasma japonicum’, a new phytoplasma taxon associated with Japanese Hydrangea phyllody. International Journal of Systematic Bacteriology 49, 1275–1285.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Schneider B, Seemüller E (1994) Presence of two set of ribosomal genes in phytopathogenic mollicutes. Applied and Environmental Microbiology 60, 3409–3412.PubMedPubMedCentralGoogle Scholar
  183. Schneider B, Maurer R, Saillard C, Kirkpatrick BC, Seemüller E (1992) Occurrence and relatedness of extrachromosomal DNAs in plant pathogenic mycoplasmalike organisms. Molecular Plant-Microbe Interactions 5, 489–495.CrossRefGoogle Scholar
  184. Schneider B, Ahrens U, Kirkpatrick BC, Seemüller E (1993) Classification of plant-pathogenic mycoplasma-like organisms using restriction-site analysis of PCR-amplified 16S rDNA. Journal of General Microbiology 139, 519–527.CrossRefGoogle Scholar
  185. Schneider B, Gibb KS, Seemüller E (1997) Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143, 3381–3389.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Schneider B, Torres E, Martìn MP, Schroder M, Behnke HD, Seemüller E (2005) ‘Candidatus Phytoplasma pini’, a novel taxon from Pinus silvestris and Pinus halepensis. International Journal of Systematic and Evolutionary Microbiology 55, 303–307.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Seemüller E, Schneider B, Maurer R, Ahrens U, Daire X, Kison H, Lorenz K, Firrao G, Avinent L, Sears BB, Stackebrandt E (1994) Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. International Journal of Systematic Bacteriology 44, 440–446.PubMedCrossRefGoogle Scholar
  188. Seemüller E, Marcone C, Lauer U, Ragozzino A, Göschl M (1998) Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology 80, 3–26.Google Scholar
  189. Seemüller E, Schneider B (2004) Taxonomic description of ‘Candidatus Phytoplasma mali’ sp. nov., ‘Candidatus Phytoplasma pyri’ sp. nov. and ‘Candidatus Phytoplasma prunorum’ sp. nov., the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology 54, 1217–1226.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Šeruga M, Škorić D, Botti S, Paltrinieri S, Juretić N, Bertaccini A (2003) Molecular characterization of a phytoplasma from the aster yellows (16SrI) group naturally infecting Populus nigra L. “Italica” trees in Croatia. Forest Pathology 33, 113–125.Google Scholar
  191. Siampour M, Izadpanah K, Galetto L, Salehi M, Marzachì C (2012) Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathology 62, 452–459.CrossRefGoogle Scholar
  192. Siddique ABM, Agrawal GK, Alam N, Krishina Reddy M (2001) Electron microscopy and molecular characterization of phytoplasmas associated with little leaf disease of brinjal (Solanum melongena) and periwinkle (Catharanthus roseus) in Bangladesh. Journal of Phytopathology 149, 237–244.CrossRefGoogle Scholar
  193. Sinha RC (1979) Purification and serology of mycoplasmalike organisms antigens from aster yellows-diseased plants by two serological procedures. Canadian Journal of Plant Pathology 1, 65–70.CrossRefGoogle Scholar
  194. Sinha RC, Benhamou N (1983) Detection of mycoplasma-like organisms antigens from aster yellows-diseased plants by two serological procedures. Phytopathology 73, 1199–1202.CrossRefGoogle Scholar
  195. Sugawara K, Himeno M, Keima T, Kitazawa Y, Maejima K, Oshima K, Namba S (2012) Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekeeping gene. Journal of General Plant Pathology 78, 389–397.CrossRefGoogle Scholar
  196. Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA (2011a) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences USA 108, E1254–E1263.Google Scholar
  197. Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011b) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Revue of Phytopathology 49, 175–195.CrossRefGoogle Scholar
  198. Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y, Nishigawa H, Ugaki M and Namba S (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Sciences USA 103, 4252–4257.CrossRefGoogle Scholar
  199. Tedeschi R, Ferrato V, Rossi J, Alma A (2006) Possible phytoplasma transovarial transmission in the psyllids Cacopsylla melanoneura and Cacopsylla pruni. Plant Pathology 55, 18–24.CrossRefGoogle Scholar
  200. Tomlinson JA, Boonham N, Dickinson M (2010) Development and evaluation of a one-hour DNA extraction and loop-mediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathology 59, 465–471.CrossRefGoogle Scholar
  201. Torres E, Bertolini E, Cambra M, Montón C, Martín MP (2005) Real-time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Molecular and Cellular Probes 19, 334–340.PubMedCrossRefPubMedCentralGoogle Scholar
  202. Toruno TY, Seruga Musić M, Simi S, Nicolaisen M, Hogenhout SA (2010) Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Molecular Microbiology 77, 1406–1415.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS (2008) Comparative genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-Australia I; rp-A) and ‘Ca. Phytoplasma asteris’ strains OY-M and AY-WB. Journal of Bacteriology 190, 3979–3991.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Tymon AM, Jones P, Harrison NA (1998) Phylogenetic relationships of coconut phytoplasmas and the development of specific oligonucleotide PCR primers. Annals of Applied Biology 132, 437–452.CrossRefGoogle Scholar
  205. Valiunas D, Jomantiene R, Davis RE (2005) A ‘Candidatus Phytoplasma asteris’-related phytoplasma associated with cherry little leaf disease represents a new subgroup, 16SrI-Q. Phytopathology 95, S106.Google Scholar
  206. Valiunas D, Staniulis J, Davis RE (2006) ‘Candidatus Phytoplasma fragariae’, a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria x ananassa. International Journal of Systematic and Evolutionary Microbiology 56, 277–281.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Valiunas D, Jomantiene R, Ivanauskas A, Abraitis R, Staniene G, Zhao Y, Davis RE (2009) First report of a new phytoplasma subgroup, 16SrIII-T, associated with decline disease affecting sweet and sour cherry trees in Lithuania. Plant Disease 93, 550.CrossRefGoogle Scholar
  208. Verdin E, Salar P, Danet J-L, Choueiri E, Jreijiri F, El Zammar S, Gèlie B, Bové J, Garnier M (2003) ‘Candidatus Phytoplasma phoenicium’, a new phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. International Journal of Systematic and Evolutionary Microbiology 53, 833–838.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Villalobos W, Martini M, Garita L, Muñoz M, Osler R, Moreira L (2011) Guazuma ulmifolia (Sterculiaceae), a new natural host of 16SrXV phytoplasma in Costa Rica. Tropical Plant Pathology 36, 2.Google Scholar
  210. Vu NT, Pardo JM, Alvarez E, LeKris HH, Kim-Lien W, Le NDT (2016) Establishment of a loop-mediated isothermal amplification (LAMP) assay for the detection of phytoplasma-associated cassava witches’ broom disease. Applied Biological Chemistry 59, 151–156.CrossRefGoogle Scholar
  211. Wei W, Kakizawa S, Jung H-Y, Suzuki S, Tanaka M, Nishigawa H, Miyata S, Oshima K, Ugaki M, Hibi T, Namba S (2004) An antibody against the SecA membrane protein of one phytoplasma reacts with those of phylogenetically different phytoplasmas. Phytopathology 94, 683–686.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Wei W, Davis RE, Lee I-M, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology 57, 1855–1867.PubMedCrossRefGoogle Scholar
  213. Wei W, Davis RE, Jomantiene R, Zhao Y (2008) Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proceedings of the National Academy of Sciences USA 105, 11827–11832.CrossRefGoogle Scholar
  214. White DT, Blackall LL, Scott PT, Walsh KB (1998) Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon, ‘Candidatus Phytoplasma australasia’. International Journal of Systematic Bacteriology 48, 941–951.PubMedCrossRefPubMedCentralGoogle Scholar
  215. Win NKK, Lee S-Y, Bertaccini A, Namba S, Jung H-Y (2013) ‘Candidatus Phytoplasma balanitae’ associated with witches’ broom disease of Balanites triflora. International Journal of Systematic and Evolutionary Microbiology 63, 636–640.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Yadav A, Bhale U, Thorat V, Shouche Y (2014). First report of a new subgroup 16SrII-M ‘Candidatus Phytoplasma aurantifolia’ associated with witches’ broom disease of Tephrosia purpurea in India. Plant Disease 98, 990.CrossRefGoogle Scholar
  217. Yadav A, Thorat V, Deokule S, Shouche Y, Prasad DT (2017) New subgroup 16SrXI-F phytoplasma strain associated with sugarcane grassy shoot (SCGS) disease in India. International Journal of Systematic and Evolutionary Microbiology 67, 374–378.PubMedCrossRefPubMedCentralGoogle Scholar
  218. Yang Y, Jiang L, Che H, Cao X, Luo D (2016) Identification of a novel subgroup 16SrII-U phytoplasma associated with papaya little leaf disease. International Journal of Systematic and Evolutionary Microbiology 66, 3485–3491.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Zamorano A, Fiore N (2016) Draft genome sequence of 16SrIII-J phytoplasma, a plant pathogenic bacterium with a broad spectrum of hosts. Genome Announcements 4, e00602–e00616.PubMedPubMedCentralCrossRefGoogle Scholar
  220. Zhang RY, Li WF, Huang YK, Wang XY, Shan HL, Luo Z-M, Yin J (2016) Group 16SrXI phytoplasma strains, including subgroup 16SrXI-B and a new subgroup, 16SrXI-D, are associated with sugar cane white leaf. International Journal of Systematic and Evolutionary Microbiology 66, 487–491.PubMedCrossRefPubMedCentralGoogle Scholar
  221. Zhao Y, Sun Q, Wei W, Davis RE, Wu W, Liu Q (2009a) ‘Candidatus Phytoplasma tamaricis’, a novel taxon discovered in witches’ broom-diseased salt cedar (Tamarix chinensis Lour.). International Journal of Systematic and Evolutionary Microbiology 59, 2496–2504.PubMedCrossRefPubMedCentralGoogle Scholar
  222. Zhao Y, Wei W, Lee I-M, Shao J, Suo X, Davis RE (2009b) Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology 59, 2582–2593.Google Scholar
  223. Zreik L, Carle P, Bové JM, Garnier M (1995) Characterization of the mycoplasmalike organism associated with witches’ broom disease of lime and proposition of a ‘Candidatus’ taxon for the organism, ‘Candidatus Phytoplasma aurantifolia’. International Journal of Systematic Bacteriology 45, 449–453.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly
  2. 2.Molecular Plant Pathology Laboratory, United States Department of AgricultureAgriculture Research ServiceBeltsvilleUSA

Personalised recommendations