First-Principles Calculations, Thermodynamic Calculations and Kinetic Calculations of Ultra High Strength Aluminum Alloys of Al–Zn–Mg–Cu–Zr

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The research for next generation of ultra high strength aluminum alloys is focused on materials of Al–Zn–Mg–Cu–Zr. In the present paper, the Al–Zn–Mg–Cu–Zr multi-component system was studied and the formation enthalpy of strengthening precipitate η′, the phase diagram of Al–Zn–Mg–Cu–Zr, the TTT diagram and the CCT diagram calculated by using the methods of First-principles calculations, thermodynamic calculations and kinetic calculations. Based on calculated results, a set of compositions and hot process parameters including temperature zones of hot processes and critical cooling rate of solution treatment are obtained. The calculated results provide primary guidance to developing Al–Zn–Mg–Cu–Zr ultra high strength aluminum alloys.

Keywords

First-principles calculations Thermodynamic Kinetic Al–Zn–Mg–Cu–Zr Phase diagram 

Notes

Acknowledgements

This work was supported by Defense Industrial Technology Development Program (JCKY2016205C009).

References

  1. 1.
    D.A. Lukasak, R.M. Hart, Strong aluminum alloy shaves airframe weight. Adv. Mater. Process. 140, 46–49 (1991)Google Scholar
  2. 2.
    K.H. Chen, H.W. Liu, Z. Zhang, The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments. J. Mater. Process. Technol. 142, 190–196 (2003)CrossRefGoogle Scholar
  3. 3.
    L.P. Huang, K.H. Chen, S. Li, Influence of high-temperature pre-precipitation on local corrosion behaviors of Al–Zn–Mg alloy. Scripta Mater. 56, 305–308 (2007)CrossRefGoogle Scholar
  4. 4.
    C.P. Ferrer, M.G. Koul, B.J. Connolly, Improvements in strength and stress corrosion cracking properties in aluminum alloy 7075 via low-temperature retrogression and re-aging heat treatments. Corrosion 59, 520–528 (2003)CrossRefGoogle Scholar
  5. 5.
    J.F. Li, Z. Peng, C.X. Li, Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. T. Nonferr. Metal. Soc. 18, 755–762 (2008)CrossRefGoogle Scholar
  6. 6.
    K.H. Chen, H.C. Fang, Z. Zhang, Effect of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al–Zn–Mg–Cu alloys. Mater. Sci. Eng., A 497, 426–431 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Tanaka, H. Esaki, K. Yamada, Mechanical properties of 7475 based aluminum alloy sheets with fine subgrain structures. J. Jpn. Inst. Light Met. 52, 553–558 (2002)CrossRefGoogle Scholar
  8. 8.
    H. Yoshida, Y. Baba, The role of zirconium to improve strength and stress-corrosion resistance of Al–Zn–Mg and Al–Zn–Mg–Cu alloys. Trans. Jpn. Inst. Met. 23, 620–630 (1982)CrossRefGoogle Scholar
  9. 9.
    Y.D. He, X.M. Zhang, J.H. You, Effect of minor Sc and Zr on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. T. Nonferr. Metal. Soc. 16, 1228–1235 (2006)CrossRefGoogle Scholar
  10. 10.
    K. Ural, A study of optimization of heat-treatment conditions in retrogressions and reageing treatment of 7075-T6 aluminum alloy. J. Mater. Sci. Lett. 13, 383–385 (1994)CrossRefGoogle Scholar
  11. 11.
    S. Chayong, H.V. Atkinson, R. Kapranos, Multistep induction heating regimes for thixoforming 7075 aluminum alloy. Mater. Sci. Technol. 20, 490–496 (2004)CrossRefGoogle Scholar
  12. 12.
    I.J. Polmear, A trace element effect in alloys based on the Aluminium–Zinc–Magnesium system. Nature 186, 303–304 (1960)CrossRefGoogle Scholar
  13. 13.
    I.J. Polmear, The ageing characteristics of complex Al–Zn–Mg alloys distinctive effects of copper and silver on the ageing mechanism. J. Inst. Met. 89, 51–59 (1960)Google Scholar
  14. 14.
    S. Kikuchi, H. Yamazaki, T. Otsuka, J. Mater. Process. Technol. 38, 689–701 (1993)CrossRefGoogle Scholar
  15. 15.
    H.C. Fang, K.H. Chen, X. Chen, X, Effect of Cr, Yb and Zr additions on localized corrosion of Al–Zn–Mg–Cu alloy. Corros. Sci. 51, 2872–2877 (2009)CrossRefGoogle Scholar
  16. 16.
    R. Ayer, J.Y. Koo, J.W. Steeds, Microanalytical study of the heterogeneous phases in commercial Al–Zn–Mg–Cu alloys. Metall. Trans. A 16, 1925–1936 (1985)CrossRefGoogle Scholar
  17. 17.
    C. Ravi, C. Wolverton, First-principles study of crystal structures and stability of Al–Mg–Si–Cu precipitates. Acta Mater. 52, 4213–4217 (2004)CrossRefGoogle Scholar
  18. 18.
    C. Wolverton, Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–Si and Al–Zn–Mg alloys. Acta Mater. 49, 3129–3142 (2001)CrossRefGoogle Scholar
  19. 19.
    D.D. Zhan, L.C. Zhou, Y. Kong, Structure and thermodynamics of the key precipitated phases in the Al–Mg–Si alloys from first-principles calculations. JMS 46, 7839–7849 (2011)CrossRefGoogle Scholar
  20. 20.
    J.L. Meijering, Retrograde solubility curves especially in alloy solid solutions. Philips Res. Rep. 3, 281–302 (1948)Google Scholar
  21. 21.
    L. Kaufman, H. Bernstein, Computer calculation of phase diagrams, New York, 1970. (Academic Press, 1970), pp. 85–88Google Scholar
  22. 22.
    N. Saunders, X. Li, A.P. Miodownik, J.-Ph. Schillé, Materials Design Approaches and Experiences (TMS, Warrendale, 2001)Google Scholar
  23. 23.
    P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 17953, 50–51 (1994)Google Scholar
  24. 24.
    G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1758, 59–60 (1999)Google Scholar
  25. 25.
    G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 11169, 54–55 (1996)Google Scholar
  26. 26.
    G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 15, 6–7 (1996)Google Scholar
  27. 27.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1936 (1997)CrossRefGoogle Scholar
  29. 29.
    J.P. Perdew, K. Burke, M. Ernzerhof, Perdew, Burke and Ernzerhof reply. Phys. Rev. Lett. 80, 889–890 (1998)CrossRefGoogle Scholar
  30. 30.
    H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 5188, 13–14 (1976)Google Scholar
  31. 31.
    M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 3616, 40–41 (1989)Google Scholar
  32. 32.
    A.T. Dinsdale, SGTE data for pure elements. CALPHAD 15, 317–425 (1991)CrossRefGoogle Scholar
  33. 33.
    O. Redlich, A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    H.W.L. Phillips, Equilibrium diagrams of aluminum alloy systems. The Aluminum Development Association, Information Bulletin 25, London, pp. 105–108 (1961)Google Scholar
  36. 36.
    N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schille, Using JMatPro to model materials properties and behavior. JOM 55, 60–65 (2003)CrossRefGoogle Scholar
  37. 37.
    X. Li, A.P. Miodownik, N. Saunders, Modelling of materials properties in duplex stainless steels. Mater. Sci. Technol. 18, 861–868 (2002)CrossRefGoogle Scholar
  38. 38.
    J.H. Auld, S.M. Cousland, The structure of the metastable η′ phase in Al–Zn–Mg alloys. J. Australian Inst. Met. 19, 194–195 (1974)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Beijing Institute of Aeronautical MaterialsBeijingPeople’s Republic of China
  2. 2.Suzhou Research Institute for Nonferrous MetalsSuzhouPeople’s Republic of China

Personalised recommendations