Sintering Fabrication and Characterizations of Powder Metallurgy Targets for Integrated Circuits

  • Zhaochong Ding
  • Xiao Liu
  • Yonghui Wang
  • Zhuang Wang
  • Qiankun Xia
  • Yongjun Li
Conference paper

Abstract

Many refractory metal and alloy films are used in Integrate Circuits processing for varied applications, such as plug, barrier layer, glue layer, gate layer, bond-pad, and etc. Usually these films are deposited from powder metallurgy (PM) targets including tungsten, tungsten titanium alloy, molybdenum, silicide alloy, chromium, ruthenium, and etc. On one hand, sintering fabrication methods for these targets, such as atmospheric pressure sintering, Hot Pressing (HP), Hot Isostatic Pressing (HIP) and Spark Plasma Sintering (SPS), are presented in this paper. And the influence of sintering methods on the target’s performance is also discussed. On another hand, the characterizations of powder metallurgy targets are also discussed, such as purity, density, grain size, grain orientation, and uniformity.

Keywords

Integrate circuits Sputtering target Powder metallurgy Refractory metal Sintering fabrication Characterizations 

References

  1. 1.
    Shen YG, Mai YW, Microstructure and structure of tungsten thin films deposited by magnetron sputtering, J. App Phy. 87 (2000) 177–179.Google Scholar
  2. 2.
    Zhang SL, Smith U, Self-aligned silicides for Ohmic contacts in complementary metal -oxide semiconductor technology, J. Vac Sci Technol A. 22 (2004) 1361–1364.Google Scholar
  3. 3.
    Li Ji, Study on the RuTi single-layer diffusion barrier in copper interconnect. Fudan University, (2010) 7–13.Google Scholar
  4. 4.
    Information on www.appliedmaterials.com.
  5. 5.
    Chi Funglo, Peter McDonald, Influence of Tungsten Sputtering Target Density on Physical Vapor Deposition Thin Film Properties, J. Journal of Electronic materials. 34 (2005) 12–16.Google Scholar
  6. 6.
    Lo C-F, Gilman PS, Draper D, U.S. Patent 6,328,927. (2001).Google Scholar
  7. 7.
    Eugene Y. Ivanov, U.S. Patent 214,374A1. (2009).Google Scholar
  8. 8.
    Suzuki S, Miyashita H, U.S. Patent 6,582,535. (2003).Google Scholar
  9. 9.
    Watanabe K, Yabe Y, U.S. Patent 7,718,117. (2010).Google Scholar
  10. 10.
    JA Dunlop, H Rensing, U.S. Patent 4,838,935. (1989).Google Scholar
  11. 11.
    Hiraki, Akitoshi, U.S. Patent 4,839,967. (1989).Google Scholar
  12. 12.
    Wickersham, Charles E, U.S. Patent 5,234,487. (1993).Google Scholar
  13. 13.
    Yamanobe T, Satou M, U.S. Patent 5,470,527. (1995).Google Scholar
  14. 14.
    Murata H, Taniguchi S, U.S. Patent 5,718778. (1998).Google Scholar
  15. 15.
    Lo C-F, Draper D, U.S. Patent 6,165,413. (2000).Google Scholar
  16. 16.
  17. 17.
    Zhang Jiuxing, Zhang Yi, Study of spark plasma sintering technology and new materials research, J. Functional Materials Information. 03 (2004) 94–104.Google Scholar
  18. 18.
    Gaku Kanou, Yuichiro Shindo, U.S. Patent 280,025. (2009).Google Scholar
  19. 19.
    C.F. Lo, D. Draper, Influence of tungsten sputtering target density on physical vapor deposition thin film properties, J. Journal of Electronic Materials. 34 (2005) 1468–1473.Google Scholar
  20. 20.
    Ding Zhaochong, Hejinjiang, Effects of vacuum hot pressing sintering on the performance of high purity W-Si alloy target, J. Rare Metal Materials and Engineering. 06 (2014) 1403–1406.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Zhaochong Ding
    • 1
    • 2
  • Xiao Liu
    • 1
    • 2
  • Yonghui Wang
    • 1
    • 2
  • Zhuang Wang
    • 1
    • 2
  • Qiankun Xia
    • 1
    • 2
  • Yongjun Li
    • 1
    • 2
  1. 1.Grikin Advanced Materials Co., Ltd.BeijingChina
  2. 2.Beijing Technology Research Center for Sputtering Target Material Engineering of High Pure MetalsBeijingChina

Personalised recommendations