Advertisement

Impact of Strike Energy on the Resolution of Dispersion Image in Active MASW Survey

  • Jumrik Taipodia
  • Arindam Dey
Conference paper

Abstract

Active MASW survey is a promising method of the recent days to evaluate the stiffness of the subsurface strata. Active MASW is largely dependent upon the energy generated from an active source. This paper describes the influence of source characteristics on the resolution of dispersion images and the depth of investigation. Higher is the applied energy, larger is the wavelength generated, and hence, larger is the depth of investigation. The efficacy of application of a low-weight sledgehammer in obtaining larger investigation depths with the aid of dispersion image stacking is reported. It is observed that larger depths of investigation can be achieved by 10 kg sledgehammer records stacked for 3-times, equivalent to single shot from 40 kg PEG.

Keywords

Active MASW Strike energy Resolution Dispersion image 

References

  1. 1.
    Park, C.B., Miller, R.D., Xia, J.: Multichannel analysis of surface waves. Geophysics 64, 800–808 (1999)CrossRefGoogle Scholar
  2. 2.
    Park, C.B., Miller, R.D., Xia, J., Ivanov, J.: Multichannel analysis of surface waves (MASW)-active and passive methods. Lead. Edge 26, 60–64 (2007)CrossRefGoogle Scholar
  3. 3.
    Richart, F.E., Hall, J.R., Woods, R.D.: Vibrations of Soils and Foundations, p. 414. Prentice-Hall Inc., New Jersey (1970)Google Scholar
  4. 4.
    Shtivelman, V.: Using surface waves for studying the shallow subsurface. Bollettino di Geofisica Teorica ed Applicata 44, 223–236 (2003)Google Scholar
  5. 5.
    Zhang, S.X., Chan, L.S., Xia, J.: The selection of field acquisition parameters for dispersion images from multichannel surface wave data. Pure. appl. Geophys. 161, 185–201 (2004)CrossRefGoogle Scholar
  6. 6.
    Gosar, A., Stopar, R., Roser, J.: Comparative test of active and passive multichannel analysis of surface waves (MASW) methods and microtremor HVSR method. RMZ Mater. Geoenvironment 55, 41–66 (2008)Google Scholar
  7. 7.
    Stephenson, W.J., Louie, J.N., Pullammanappallil, S., Williams, R.A., Odum, J.K.: Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: implications for earthquake ground-motion assessment. Bull. Seismol. Soc. Am. 95, 2506–2516 (2005)CrossRefGoogle Scholar
  8. 8.
    Park, C.B., Miller, R.D., Ryden, N., Xia, J., Ivanov, J.: Combined use of active and passive surface waves. J. Environ. Eng. Geophys. 10, 323–334 (2005)CrossRefGoogle Scholar
  9. 9.
    Park, C.B., Miller, R.D., Xia, J.: Offset and resolution of dispersion curve in Multichannel analysis of surface waves (MASW). In: Proceedings of the SAGEEP SSM4, pp. 1–6 (2001)Google Scholar
  10. 10.
    Xia, J., Miller, R.D., Park, C.B., Ivanov, J.: Construction of 2-D vertical shear-wave velocity field by the multichannel analysis of surface wave technique. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 1197–1206 (2001)Google Scholar
  11. 11.
    Park, C.B., Miller, R.D., Miura, H.: Optimum field parameters of an MASW survey. In: Expanded Abstract: Japanese Society of Exploration Geophysics (2002)Google Scholar
  12. 12.
    Wood, C.M., Cox, B.R.: A comparison of MASW dispersion uncertainty and bias for impact and harmonic sources. In: Geocongress, pp. 2756–2765. ASCE (2012)Google Scholar
  13. 13.
    Xu, Y., Xia, J., Miller, R.D.: Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source. J. Appl. Geophys. 59, 117–125 (2006)CrossRefGoogle Scholar
  14. 14.
    Kaufmann, R.D., Xia, J., Benson, R.C., Yuhr, L.B., Casto, D.W., Park, C.B.: Evaluation of MASW data acquired with a hydrophone streamer in a shallow marine environment. J. Environ. Eng. Geophys. 10, 87–98 (2005)CrossRefGoogle Scholar
  15. 15.
    Neducza, B.: Stacking of surface waves. Geophysics 72, 51–58 (2007)CrossRefGoogle Scholar
  16. 16.
    Foti, S., Lai, C.G., Rix, G.J., Strobbia, C.: Surface wave methods for near-surface site characterization. CRC Press, United States (2015)Google Scholar
  17. 17.
    Kanli, A.I., Tildy, P., Pronay, Z., Pinar, A., Hermann, L.: Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey. Geophys. J. Int. 165, 223–235 (2006)CrossRefGoogle Scholar
  18. 18.
    Moro, D.G., Pipan, M., Forte, E., Finetti, I.: Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments. In: Expanded Abstracts: Society of Exploration Geophysicists, pp. 1247–1250 (2003)Google Scholar
  19. 19.
    Park, C.B., Miller, R.D., Xia, J.: Imaging dispersion curves of surface waves on multi-channel record. In: Expanded Abstract: Society of Exploration Geophysics, pp. 1377–1380 (1998)Google Scholar
  20. 20.
    Dikmen, U., Arisoy, M., Akkaya, I.: Offset and linear spread geometry in the MASW method. J. Geophys. Eng. 7, 211–222 (2010)CrossRefGoogle Scholar
  21. 21.
    Luo, Y., Xia, J., Miller, R.D., Xu, Y., Liu, J., Liu, Q.: Rayleigh-wave dispersive energy imaging using a high-resolution linear radon transforms. Pure. appl. Geophys. 903, 903–922 (2008)CrossRefGoogle Scholar
  22. 22.
    Taipodia, J., Baglari, D., Dey, A.: Resolution of dispersion image obtained from active MASW survey. Disaster Adv. 10, 34–45 (2017)Google Scholar
  23. 23.
    Taipodia, J., Baglari, D., Dey, A.: Recommendations for generating dispersion images of optimal resolution from Active MASW survey. Innovative Infrastruct. Sol. 3(14), 1–19 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringNIT Arunachal PradeshYupiaIndia
  2. 2.Department of Civil EngineeringIIT GuwahatiGuwahatiIndia

Personalised recommendations