Thermodynamic Response of Crystalline Swelling and Double-Layer Swelling of Compacted Bentonite

  • Yonggui ChenEmail author
  • Lina Liu
Conference paper


Strong thermodynamic disequilibrium existed in HLW repository site often deteriorates the hydration swelling capacity of compacted bentonite, including the crystalline swelling and the double-layer swelling. In order to investigate the temperature effect on the crystalline swelling capacity and the double-layer swelling capacity, four swelling pressure tests and four swelling strain tests were conducted on compacted Gaomiaozi (GMZ) bentonite specimens saturated with de-ionized water under the temperature of 20 °C to 80 °C. Main observations show that the crystalline swelling capacity and the double-layer swelling capacity generally decrease with the temperature increases; whereas the crystalline swelling pressure and the double-layer swelling strain present a slight increase tendency under higher temperatures, especially the temperature 60 °C and 80 °C.


Compacted bentonite Crystalline swelling Double-layer swelling Swelling pressure Swelling strain 


  1. Autor, S.: The study of Spanish clays for their use as sealing materials in nuclear waste repositories: 20 years of progress. J. Iberian Geol. 32(1), 15–36 (2006)Google Scholar
  2. Baldi, G., Hueckel, T., Pellegrini, R.: Thermal volume changes of the mineral–water system in low-porosity clay soils. Can. Geotech. J. 25(4), 807–825 (1988)CrossRefGoogle Scholar
  3. Bird, P.: Hydration-phase diagrams and friction of montmorillonite under laboratory and geologic conditions, with implications for shale compaction, slope stability, and strength of fault gouge. Tectonophysics 107(3), 235–260 (1984)CrossRefGoogle Scholar
  4. Castellanos, E., Villar, M.V., Romero, E., Lloret, A., Gens, A.: Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite. Phys. Chem. Earth Parts A/B/C 33, S516–S526 (2008)CrossRefGoogle Scholar
  5. Chen, Y.G., He, Y., Ye, W.M., Lin, C.H., Zhang, X.F., Ye, B.: Removal of chromium(III) from aqueous solutions by adsorption on bentonite from Gaomiaozi. China. Environ. Earth Sci. 67(5), 1261–1268 (2012)CrossRefGoogle Scholar
  6. Demars, K.R., Charles, R.D.: Soil volume changes induced by temperature cycling. Can. Geotech. J. 19(2), 188–194 (1982)CrossRefGoogle Scholar
  7. Dixon, D.A.: Porewater salinity and the development of swelling pressure in bentonite-based buffer and backfill materials. Posiva Report (2000)Google Scholar
  8. Dougherty, R.C.: Temperature and pressure dependence of hydrogen bond strength: A perturbation molecular orbital approach. J. Chem. Phys. 109(17), 7372–7378 (1998)CrossRefGoogle Scholar
  9. Esrafili, M.D.: A theoretical investigation of the characteristics of hydrogen/halogen bonding interactions in dibromo-nitroaniline. J. Mol. Model. 19(3), 1417 (2013)CrossRefGoogle Scholar
  10. Fredlund, D.G., Rahardjo, H.: Soil Mechanics for Unsaturated Soils. Jons Wley & Sons, New York (1993)CrossRefGoogle Scholar
  11. Garcíagarcía, S., Jonsson, M., Wold, S.: Temperature effect on the stability of bentonite colloids in water. J. Colloid Interface Sci. 298(2), 694–705 (2006)CrossRefGoogle Scholar
  12. Komine, H.: Simplified evaluation on hydraulic conductivities of sand - bentonite mixture backfill. Appl. Clay Sci. 26(1–4), 13–19 (2004)CrossRefGoogle Scholar
  13. Laird, D.A.: Model for crystalline swelling of 2:1 phyllosilicates. Clays Clay Miner. 44(4), 553–559 (1996)CrossRefGoogle Scholar
  14. Laird, D.A.: Influence of layer charge on swelling of smectites. Appl. Clay Sci. 34(1–4), 74–87 (2006)CrossRefGoogle Scholar
  15. Laine, H., Karttunen, P.: Long-Term Stability of Bentonite: A Literature Review. POSIVA, Working Report 2010-53, Finland (2010)Google Scholar
  16. Lemaire, T., Moyne, C., Stemmelen, D.: Imbibition test in a clay powder (MX-80 bentonite). Appl. Clay Sci. 26(1–4), 235–248 (2004)CrossRefGoogle Scholar
  17. Lingnau, B.E., Graham, J., Yarechewski, D., Tanaka, N., Gray, M.N.: Effects of temperature on strength and compressibility of sand-bentonite buffer. Eng. Geol. 41(1–4), 103–115 (1996)CrossRefGoogle Scholar
  18. Lloret, A., Villar, M.V.: Advances on the knowledge of the therm-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite. Phys. Chem. Earth Parts A/B/C 32(8–14), 701–715 (2007)CrossRefGoogle Scholar
  19. Mafy, N.N., Afrin, T., Rahman, M.M., Mollah, M.Y.A., Susan, M.A.B.H.: Effect of temperature perturbation on hydrogen bonding in aqueous solutions of different urea concentrations. RSC Adv. 5(73), 59263–59272 (2015)CrossRefGoogle Scholar
  20. Marcelja, S., Quirk, J.P.: Salt penetration into electrical double layers. Langmuir 8(11), 2778–2780 (1992)CrossRefGoogle Scholar
  21. Mata, C., Guimarães, L.N., Ledesma, A., Gens, A., Olivella, S.: A hydro-geochemical analysis of the saturation process with salt water of a bentonite crushed granite rock mixture in an engineered nuclear barrier. Eng. Geol. 81(3), 227–245 (2005)CrossRefGoogle Scholar
  22. Muurinen, A., Lehikoinen, J.: Porewater chemistry in compacted bentonite. Eng. Geol. 54(1), 207–214 (1999)CrossRefGoogle Scholar
  23. Norrish, K.: The swelling of montmorillonite. Discuss. Faraday Soc. 18, 120–134 (1954)CrossRefGoogle Scholar
  24. Olphen, H.V.: Thermodynamics of interlayer adsorption of water in clays. I.—Sodium vermiculite. J. Colloid Sci. 20(8), 822–837 (1965)CrossRefGoogle Scholar
  25. Pusch, R.: Use of clays as buffers in radioactive repositions. KBS Report, pp. 46–83 (1983)Google Scholar
  26. Pusch, R., Karnland, O., Hokmark, H.: GMM - a general microstructural model for qualitative and quantitative studies of smectite clays (1990)Google Scholar
  27. Rao, S.M., Thyagaraj, T.: Role of direction of salt migration on the swelling behaviour of compacted clays. Appl. Clay Sci. 38(1), 113–129 (2007)CrossRefGoogle Scholar
  28. Romero, E., Villar, M.V., Lloret, A.: Thermo-hydro-mechanical behaviour of two heavily overconsolidated clays. Eng. Geol. 81(3), 255–268 (2005)CrossRefGoogle Scholar
  29. Saiyouri, N., Hicher, P.Y., Tessier, D.: Microstructural approach and transfer water modeling in highly compacted unsaturated swelling clays. Mech. Cohesive-frictional Mater. 5(1), 41–60 (2000)CrossRefGoogle Scholar
  30. Savage, D., Bateman, K., Hill, P., Hughes, C., Milodowski, A., Pearce, J., Rae, E., Rochelle, C.: Rate and mechanism of the reaction of silicates with cement pore fluids. Appl. Clay Sci. 7, 33–45 (1992)CrossRefGoogle Scholar
  31. Siddiqua, S.S., Blatz, J.B., Siemens, G.S.: Evaluation of the impact of pore fluid chemistry on the hydromechanical behaviour of clay-based sealing materials. Can. Geotech. J. 48(2), 199–213 (2011)CrossRefGoogle Scholar
  32. Sridharan, A., Gurtug, Y.: Swelling behaviour of compacted fine-grained soils. Eng. Geol. 72(1), 9–18 (2004)CrossRefGoogle Scholar
  33. Sultan, N., Delage, P., Cui, Y.J.: Temperature effects on the volume change behaviour of boom clay. Eng. Geol. 64(2), 135–145 (2002)CrossRefGoogle Scholar
  34. Suzuki, S., Prayongphan, S., Ichikawa, Y., Chae, B.G.: In situ observations of the swelling of bentonite aggregates in NaCl solution. Appl. Clay Sci. 29(2), 89–98 (2005)CrossRefGoogle Scholar
  35. Tripathy, S., Sridharan, A., Schanz, T.: Swelling pressures of compacted bentonites from diffuse double layer theory. Can. Geotech. J. 41(3), 437–450 (2004)CrossRefGoogle Scholar
  36. Villar, M.V., Lloret, A.: Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl. Clay Sci. 26(1–4), 337–350 (2004)CrossRefGoogle Scholar
  37. Xie, M.L., Wang, W.Q., De Jonge, J., Kolditz, O.: Numerical modelling of swelling pressure in unsaturated expansive elasto-plastic porous media. Transp. Porous Media 66(66), 311–339 (2007)CrossRefGoogle Scholar
  38. Ye, W.M., Chen, Y.G., Chen, B., Wang, Q., Wang, J.: Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite. Eng. Geol. 116(1), 12–20 (2010)CrossRefGoogle Scholar
  39. Ye, W.M., Borrell, N.C., Zhu, J.Y., Chen, B., Chen, Y.G.: Advances on the investigation of the hydraulic behavior of compacted GMZ bentonite. Eng. Geol. 169(6), 41–49 (2014)CrossRefGoogle Scholar
  40. Ye, W.M., Wan, M., Chen, B., Chen, Y.G., Cui, Y.J., Wang, J.: Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite. Environ. Earth Sci. 68(1), 281–288 (2013)CrossRefGoogle Scholar
  41. Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., Cui, Y.J.: Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Eng. Geol. 166(10), 74–80 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical EngineeringTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations