Applications of Bacterial Polysaccharides with Special Reference to the Cosmetic Industry

  • Acharya Balkrishna
  • Veena Agarwal
  • Gaurav Kumar
  • Ashish Kumar Gupta


Bacteria from all taxa synthesize various valuable, structural, and functional polysaccharides. Bacterial polysaccharides are biodegradable, biocompatible, and naturally nontoxic biopolymers. The bacteria secrete polysaccharides into the environment. These polysaccharides are referred to as exopolysaccharides (EPS). These microbial polysaccharides are used in an extensive range of cosmetics, pharmaceutical, medical, agricultural, and food applications. Among these different drives, cosmetics are complicated polyphase systems. Main bacterial polysaccharides, which are xanthan gum and gellan gum, are regularly used as psychosensorial agents and viscosity controllers. Further bacterial polysaccharides, viz., bacterial cellulose (BC), hyaluronic acid (HA), and levan, contain biological properties such as skin regeneration and defense. These bacterial polysaccharides are essential active agents in cosmetic formulations. The nontoxic activities of these bacterial polysaccharides have been systematically assessed. Several studies have established the safety of cosmetic ingredients during their applications.


Bacterial polysaccharide EPS Cosmetic formulations Nontoxic Biocompatible 



The corresponding author of the book chapter would like to thank Head, Patanjali Yogpeeth Haridwar, Uttarakhand, India, for providing necessary support and facilities.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this chapter.


  1. Allemann IB, Baumann L (2008) Hyaluronic acid gel (Juvéderm™) preparations in the treatment of facial wrinkles and folds. Clin Interv Aging 3:629–634CrossRefGoogle Scholar
  2. Ammala A (2013) Biodegradable polymers as encapsulation materials for cosmetics and personal care products. Int J Cosmet Sci 35:113–124CrossRefGoogle Scholar
  3. Amnuaikit T, Chusuit T, Raknam P, Boonme P (2011) Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med Devices Evid Res 4:77–81Google Scholar
  4. Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:341–354Google Scholar
  5. Barnhart DM, Su S, Farrand SK (2014) A signaling pathway involving the diguanylate cyclase CelR and the response regulator DivK controls cellulose synthesis in Agrobacterium tumefaciens. J Bacteriol 196(6):1257–1274CrossRefGoogle Scholar
  6. Berkó S, Maroda M, Bodnár M, Eros G, Hartmann P, Szentner K, Szabó-Révész P, Kemény L, Borbély J, Csányi E (2013) Advantages of cross-linked versus linear hyaluronic acid for semisolidskin delivery systems. Eur Pol J 49:2511–2517CrossRefGoogle Scholar
  7. Chew A-L, Maibach HI (2001) Safety terminology. In: Barel AO, Paye M, Maibach HI (eds) Handbook of cosmetic science and technology. Marcel Dekker, New York, pp 47–52Google Scholar
  8. Chong BF, Blank LM, Mclaughlin R, Nielsen LK (2005) Microbial hyaluronic acid production. Appl Microbiol Biotechnol 66:341–351CrossRefGoogle Scholar
  9. Coleman RJ, Patel YN, Harding NE (2008) Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 35:263–274CrossRefGoogle Scholar
  10. Chang-Chun (2009) Bacterial polysaccharides: current innovations and future trends. Chem Biochem, Horizon Scientific Press, Europe, pp 2539–2540Google Scholar
  11. Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79:889–900CrossRefGoogle Scholar
  12. Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD et al (2016) Safety assessment of microbial polysaccharide gums as used in cosmetics. Int J Toxico 35(1):5S–49SCrossRefGoogle Scholar
  13. Freitas F, Alves VD, Pais J, Costa N, Oliveira C, Mafra L et al (2009) Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresour Technol 100(2):859–865CrossRefGoogle Scholar
  14. Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotech 29(8):388–398CrossRefGoogle Scholar
  15. Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92(2):1432–1442CrossRefGoogle Scholar
  16. Hasan N, Biak DRA, Kamarudin S (2012) Application of bacterial cellulose (BC) in natural facial scrub. Int J Adv Sci Eng Inf Technol 2(4):1–4CrossRefGoogle Scholar
  17. Imeson A (ed) (2010) Food stabilisers, thickening and gelling agents. Wiley-Blackwell, West SussexGoogle Scholar
  18. Kang SA, Jang K-H, Seo J-W, Kim KH, Kim YH, Rairakhwada D, Seo MY, Lee JO, Ha SD, Kim CH, Rhee S-K (2009) Levan: applications and perspectives. In: Rehm BHA (ed) Microbial production of biopolymers and polymer precursors-applications and perspectives. Caister Academic, Wymondham, pp 145–161Google Scholar
  19. Kenne L, Lindberg BENGT (1983) Bacterial polysaccharides. The Polysaccharides 2:287–363CrossRefGoogle Scholar
  20. Kim J-H, Yoo S-J, Oh D-K, Kweon Y-G, Park D-W, Lee C-H, Gil G-H (1996) Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzym Microb Technol 19:440–445CrossRefGoogle Scholar
  21. Lapasin R, Pricl S (1995) Industrial applications of polysaccharides. In: Rheology of industrial polysaccharides: theory and applications. Boston, Springer, pp 134–161CrossRefGoogle Scholar
  22. Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Factories 10:99CrossRefGoogle Scholar
  23. Mohite BV, Salunke BK, Patil SV (2013) Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Appl Biochem Biotechnol 169(5):1497–1511CrossRefGoogle Scholar
  24. Morris VJ (1991) Bacterial polysaccharides for use in food and agriculture. In: Biotechnology and polymers. Plenum Press, New York, pp 135–146CrossRefGoogle Scholar
  25. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13(11):14002–14015CrossRefGoogle Scholar
  26. Oliveira MP, da Silva RSSF, Buzato JB, Celligoia MAPC (2007) Study of Levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem Eng J 37:177–183CrossRefGoogle Scholar
  27. Öner ET (2013) Microbial production of extracellular polysaccharides from biomass. In: Pretreatment techniques for biofuels and biorefineries. Springer, Berlin/Heidelberg, pp 35–56CrossRefGoogle Scholar
  28. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5(10):439–445CrossRefGoogle Scholar
  29. Ramalingam C, Priya J, Mundra S (2014) Applications of microbial polysaccharides in food industry. Int J Pharm Sci Rev Res 27(1):322–324Google Scholar
  30. Roberts IS (1995) Bacterial polysaccharides in sickness and in health. Microbiology 141(9):2023–2031CrossRefGoogle Scholar
  31. Rottava I, Batesini G, Silva MF, Lerin L, de Oliveira D, Padilha FF, Toniazzo G, Mossi A, Cansian RL, Di Luccio M, Treichel H (2009) Xanthan gum production and rheological behavior using different strains of Xanthomonas sp. Carbohydr Polym 77(1):65–71CrossRefGoogle Scholar
  32. Senthilkumar V, Gunasekaran P (2005) Influence of fermentation conditions on levan production by Zymomonas mobilis CT2. Indian J Biotechnol 4:491–496Google Scholar
  33. Siddiqui MW, Prasad K, Bansal V (eds) (2017) Plant secondary metabolites, Three-Volume Set. CRC PressGoogle Scholar
  34. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73(4):515–531CrossRefGoogle Scholar
  35. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16(1):41–46CrossRefGoogle Scholar
  36. Trommer H, Neubert RHH (2005) The examination of polysaccharides as potential antioxidative compounds for topical administration using a lipid model system. Int J Pharm 298:153–163CrossRefGoogle Scholar
  37. Ullrich M (ed) (2009) Bacterial polysaccharides: current innovations and future trends. Caister Academic, WymondhamGoogle Scholar
  38. Van Essche R (2001) EEC cosmetic directive and legislation in Europe. In: Barel AO, Paye M, Maibach HI (eds) Handbook of cosmetic science and technology. Marcel Dekker, New York, pp 729–736Google Scholar
  39. Van Soest PV, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597CrossRefGoogle Scholar
  40. Vazquez JA, Montemayor MI, Fraguas J, Murado MA (2010) Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microb Cell Factories 9(1):46CrossRefGoogle Scholar
  41. Vazquez JA, Rodríguez-Amado I, Montemayor MI, Fraguas J, González MP, Murado MA (2013) Production using marine waste sources: characteristics, applications and eco-friendly processes: a review. Mar Drugs 11:747–774CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Acharya Balkrishna
    • 1
  • Veena Agarwal
    • 1
  • Gaurav Kumar
    • 2
  • Ashish Kumar Gupta
    • 1
  1. 1.Drug Discovery & Development DivisionPatanjali Research Foundation TrustHaridwarIndia
  2. 2.Department of MicrobiologyLovely Professional UniversityPhagwaraIndia

Personalised recommendations