Advertisement

Microbial Cellulases: Role in Second-Generation Ethanol Production

  • Anita Saini
  • Neeraj K. Aggarwal
  • Anita Yadav
Chapter

Abstract

Cellulases are a group of hydrolytic enzymes, which work together as a system, to catalyze the hydrolysis of cellulose. Cellulose is a high-molecular-weight linear homopolymer of D-glucopyranose units linked together with β-(l → 4)-glycosidic bonds, with cellobiose dimer being the repeating unit. In nature, cellulose is present in the plant cell walls, in a matrix of hemicellulose and lignin. Cellulose is the most abundant organic polymer on the earth. The renewability of the cellulosic biomass makes it an attractive feedstock for various industrial applications. Nowadays bioethanol production from cellulose, also known as second-generation ethanol production, is the most extensively employed practice, being carried out globally to ensure energy security for future generations by providing a cleaner fuel technology. However, the usefulness of cellulose in ethanol production depends on its conversion into glucose, which can be carried out both chemically as well as enzymatically. Owing to various disadvantages, the chemical methods involving the use of acids are avoided and needed to be replaced with biological methods involving the use of cellulolytic enzymes. Cellulose hydrolysis is mediated by three major types of cellulases, i.e., exoglucanases, endoglucanases, and β-glucosidases. Cellulases are produced naturally by a wide variety of microorganisms, including bacteria, fungi, and actinomycetes. In the second-generation ethanol production, the cost of cellulases is among major economic barriers. However, the exploitation of the microbial cellulolytic systems after their genetic improvement and the other industrially relevant strategies of enzyme production and recycling can make the ethanol production process economical for its wide-scale utilization at the commercial levels.

Keywords

Bioethanol production Cellulases Lignocellulose Microorganisms Second generation ethanol 

References

  1. Acharaya S, Chaudhry A (2012) Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol 43:844–856CrossRefGoogle Scholar
  2. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861PubMedCrossRefGoogle Scholar
  3. Anbar M, Gul O, Lamed R, Sezerman UO, Bayer EA (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol 78:3458–3464PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173CrossRefGoogle Scholar
  5. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:1–11CrossRefGoogle Scholar
  6. Avellaneda-Torres LM, Pulido CPG, Rojas ET (2014) Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia. Braz J Microbiol 45:1211–1220PubMedCrossRefGoogle Scholar
  7. Azizi M, Hemmat J, Seifati SM, Torktaz I, Karimi S (2015) Characterization of a thermostable endoglucanase produced by Isoptericola variabilis sp. IDAH9. Braz J Microbiol 46:1225–1234PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The Cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554PubMedCrossRefGoogle Scholar
  9. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzym Res 2011:1–17CrossRefGoogle Scholar
  10. Carvaloh MLA, Carvaloh DF, Gomes EB, Maeda RN, Anna LMMS, de Castro AM, Pereira N Jr (2014) Optimisation of cellulase production by Penicillium funiculosum in a stirred tank bioreactor using multivariate response surface analysis. Enzym Res 2014:1–8Google Scholar
  11. Chandel AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32Google Scholar
  12. Chang KL, Thitikorn-amorn J, Hsieh JF, Ou BM, Chen SH, Ratanakhanokchai K, Huan PJ, Chen ST (2011) Enhanced enzymatic conversion with freeze pretreatment of rice straw. Biomass Bioenergy 35:90–95CrossRefGoogle Scholar
  13. Chartchalerm INA, Tanawut T, Hikamporn K, Ponpitak P, Virapong P (2007) Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J 6:167–176Google Scholar
  14. Chen WH, Pen BL, Yu CT, Hwang WS (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and stream explosion for bioethanol production. Bioresour Technol 102:2916–2924PubMedCrossRefGoogle Scholar
  15. Dantur KI, Enrique R, Welin B, Castagnaro AP (2015) Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5:1–11CrossRefGoogle Scholar
  16. Dashtban M, Schraft H, Wensheng Q (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578–595PubMedPubMedCentralCrossRefGoogle Scholar
  17. de Lima ALG, de Nascimento RP, da Silva Bon EP, Coelho RRR (2005) Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzym Microb Technol 37:272–277CrossRefGoogle Scholar
  18. del-Pulgar EMG, Saadeddin A (2014) The cellulolytic system of Thermobifida fusca. Crit Rev Microbiol 4:236–247CrossRefGoogle Scholar
  19. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33:1–18CrossRefGoogle Scholar
  20. Doi RH, Kosugi A (2004) Cellulosomes: plant cell wall degrading enzyme complexes. Nat Rev Microbiol 2:541–551PubMedCrossRefGoogle Scholar
  21. Doi RH, Kosugi A, Murashima Murashima K, Tamaru Y, Han SO (2003) Cellulosomes from mesophilic bacteria. J Bacteriol 185:5907–5914PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM (2014) Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J Anal Appl Pyrolysis 107:323–331CrossRefGoogle Scholar
  23. Du R, Su R, Zhang M, Qi W, He Z (2014) Cellulase recycling after high-solids simultaneous saccharification and fermentation of combined pretreated corncob. Front Energy Res 2:1–8CrossRefGoogle Scholar
  24. Eida MF, Nagaoka T, Wasaki J, Kouno K (2012) Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts. Microbes Environ 27:226–233PubMedCentralCrossRefPubMedGoogle Scholar
  25. El-Deen AMN, Shata HMAH, Farid MAF (2014) Improvement of β-glucosidase production by co-culture of Aspergillus niger and A. oryzae under solid state fermentation through feeding process. Ann Microbiol 64:627–637CrossRefGoogle Scholar
  26. Ellila S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:1–17CrossRefGoogle Scholar
  27. Estácio Jussie Odisi, Marcela Bruschi Silvestrin, Rodrigo Yoji Uwamori Takahashi, Marcus Adonai Castro da Silva, André Oliveira Souza Lima, (2012) Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electronic Journal of Biotechnology 15(5)Google Scholar
  28. Fujji T, Inoue H, Ishikawa K (2013) Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus. AMB Express 3:1–9CrossRefGoogle Scholar
  29. Garcia III, Oh AS, Engler CR (1989) Cellulase immobilization on Fe3O4 and characterization. Biotechnol Bioeng 33:321–326PubMedCrossRefGoogle Scholar
  30. Gautam SP, Bundela PS, Pandey AK, Jamaluddin AMK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol 2012:1–12CrossRefGoogle Scholar
  31. Gilbert IG, Tsao GT (1983) Interaction between solid substrate and cellulase enzymes in cellulose hydrolysis. Annu Rep Ferment Processes (USA) 6:323–358CrossRefGoogle Scholar
  32. Gilmore SP, Henske JK, O’Malley MAO (2015) Driving biomass breakdown through engineered cellulosomes. Bioengineered 6:204–208PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gladden JM, Allgaier M, Miller CS, Hazen TC, Vander Gheynst JS, Hugenholtz P, Simmons BA, Singer SW (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77:5804–5812PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gnansounnou E, Dauriat A (2005) Ethanol form biomass: a review. J Sci Ind Res 64:809–821Google Scholar
  35. Harchand RK, Singh S (1997) Characterization of cellulase complex of Streptomyces albaduncus. J Basic Microbiol 37:93–103PubMedCrossRefGoogle Scholar
  36. Harkki A, Mäntylä A, Penttilä M, Muttilainen S, Bühler R, Suominen P, Knowles J, Nevalainen H (1991) Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzym Microb Technol 13:227–233CrossRefGoogle Scholar
  37. Haung S, Sheng P, Zhang H (2012) Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int J Mol Sci 13:2563–2577CrossRefGoogle Scholar
  38. Henrisatt B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726CrossRefGoogle Scholar
  39. Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:1–12CrossRefGoogle Scholar
  40. Ikeda Y, Parashar A, Chae M, Bressler DC (2015) Reusability of immobilized cellulases with highly retained enzyme activity and their application for the hydrolysis of model substrates and lignocellulosic biomass. J Thermodyn Catal 6:1–7CrossRefGoogle Scholar
  41. Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv Enzyme Res 4:44–55CrossRefGoogle Scholar
  42. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559CrossRefGoogle Scholar
  43. Jayant M, Rashmi J, Shailendra M, Deepesh Y (2011) Production of cellulase by different co-culture of Aspergillus niger and Penicillium chrysogenum from waste paper, cotton waste and bagasse. J Yeast Fungal Res 2:24–27Google Scholar
  44. Juwaied AA, Adnan S, Al-Amiery AAHH (2010) Production of cellulase by different co-culture of Aspergillus niger and Trichoderma viride from waste paper. J Yeast Fungal Res 1:108–111Google Scholar
  45. Kaar WE, Gutierrez CV, Kinoshita CM (1998) Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy 14:277–287CrossRefGoogle Scholar
  46. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J 2014:1–13Google Scholar
  47. Khare SK, Pandey A, Larroche C (2015) Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J:1–7Google Scholar
  48. King AJ, Cragg SM, Li Y, Dymond J, Guille MJ, Bolwes DJ, Bruce NC, Graham IA, Mason SJM (2010) Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. PNAS 107:5345–5350PubMedCrossRefGoogle Scholar
  49. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng:1–5Google Scholar
  50. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 2011:1–10CrossRefGoogle Scholar
  51. Kumakura M, Tamada M, Kasai N, Kaestu I (1989) Enhancement of cellulase production by immobilization of Trichoderma reesei cells. Biotechnol Bioeng 33:1358–1362PubMedCrossRefGoogle Scholar
  52. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–191PubMedCrossRefGoogle Scholar
  53. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  54. Lamilla C, Pavez M, Santos A, Hermosilla A, Llanquinao V, Barrientos L (2017) Bioprospecting for extracellular enzymes from culturable Actinobacteria from the South Shetland Islands, Antarctica. Polar Biol 40:719–726CrossRefGoogle Scholar
  55. Li D, Li A, Papageorgiou AC (2011) Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzym Res 2011:91–99Google Scholar
  56. Liang C, Fioroni M, Rodríguez-Ropero F, Xue Y, Schwaneberg U, Ma Y (2011) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154:46–53PubMedCrossRefGoogle Scholar
  57. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467CrossRefGoogle Scholar
  58. Lindedam J, Haven MO, Chylenski P, Jørgensen H, Felby C (2013) Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes. Bioresour Technol 2013:1–33Google Scholar
  59. Liu W, Zhang XZ, Zhang Z, Zhang YHP (2010) Engineering of Clostridium phytofermentans endoglucanase Cel5A for improved thermostability. Appl Environ Microbiol 76:4914–4917PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z, Shen Q (2011) Thermostable cellulase production of Aspergillus fumigatusZ5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegradation 65:717–725CrossRefGoogle Scholar
  61. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mahadevan SA, Wi SG, Lee DS, Bae HJ (2008) Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287:205–211PubMedCrossRefGoogle Scholar
  63. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mathew GM, Sukumaran RK, Singhania RR, Pandey A (2008) Progress in research on fungal cellulases for lignocellulose degradation. J Sci Ind Res 67:898–907Google Scholar
  65. McCarthy AJ (1987) Lignocellulose degrading actinomycetes. FEMS Microbiol Lett 46:45–163CrossRefGoogle Scholar
  66. Mielenz JR, Bardsley JS, Wyman CE (2009) Fermentation of soybean hulls to ethanol while preserving protein value. Bioresour Technol 100:3532–3539PubMedCrossRefGoogle Scholar
  67. Mienda BS, Idi A, Umar A (2011) Microbiological features of solid state fermentation and its applications – an overview. Res Biotechnol 2:21–26Google Scholar
  68. Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. PNAS 110:14592–14597PubMedCrossRefGoogle Scholar
  69. Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1:1–12CrossRefGoogle Scholar
  70. Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng 79:610–618PubMedCrossRefGoogle Scholar
  71. Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42:1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nanda S, Mohammad J, Reddy SN, Kozinski AJ, Dalai AK (2013) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191CrossRefGoogle Scholar
  73. Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Mass R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems and practices. Bioresour Biprocess 4:1–22CrossRefGoogle Scholar
  74. Odisi EJ, Silvestrin MB, Takahashi RYU, da Silva MAC, Oliveira Souza Lima A, (2012) Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electron J Biotechnol 15(5):18Google Scholar
  75. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162Google Scholar
  76. Perez JA, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63PubMedCrossRefGoogle Scholar
  77. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology 158:58–68PubMedCrossRefGoogle Scholar
  78. Poszytek K, Ciezkowska M, Sklodowska A, Drewniak L (2016) Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front Microbiol 7:1–11CrossRefGoogle Scholar
  79. Rakshit SK, Sahai V (1991) Optimal control strategy for the enhanced production of cellulase enzyme using the new mutant Trichoderma reesei E-12. Bioprocess Eng 6(3):101–107CrossRefGoogle Scholar
  80. Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: an insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80:330–340CrossRefGoogle Scholar
  81. Rezende CA, de Lima MA, Maziero P, deAzevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 54:1–18Google Scholar
  82. Robu B, Petruc V, Macoveanu M (2005) Integrated environmental impact and risk assessment of emissions resulted from oil distribution. Environ Eng Manag J 4:499–513CrossRefGoogle Scholar
  83. Rooks DJ, McDonald JE, McCarthy AJ (2012) Metagenomic approaches to the discovery of cellulases. Methods Enzymol 510:375–394PubMedCrossRefGoogle Scholar
  84. Rubin E (2008) Genomics of cellulosic biofuels. Nature 454:841–845PubMedCrossRefGoogle Scholar
  85. Russell JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67:183–197PubMedCrossRefGoogle Scholar
  86. Sadhu S, Maiti TK (2013) Cellulase production by bacteria: a review. British Microbiol Res J 3:235–258CrossRefGoogle Scholar
  87. Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453PubMedCrossRefGoogle Scholar
  88. Saha BC, Cotta MA (2007) Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzyme Microb Technol 41:528–532CrossRefGoogle Scholar
  89. Saini JK, Saini R, Tewari L (2015a) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353PubMedCrossRefGoogle Scholar
  90. Saini A, Aggarwal NK, Yadav A (2015b) Actinomycetes: a source of lignocellulolytic enzymes. Enzym Res 2015:1–15CrossRefGoogle Scholar
  91. Sajith S, Sreedevi S, Priji P, Unni KN, Benjamin S (2014) Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1. Ann Microbiol 64:763–771CrossRefGoogle Scholar
  92. Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An Overview on Fungal Cellulases with an Industrial Perspective. J Nutr Food Sci 6:461Google Scholar
  93. Sannigrahi P, Ragauskas AJ, Tusakn GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin 4:209–226CrossRefGoogle Scholar
  94. Sarkar N, Ghosh SK, Bannerjee S, Aika K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37:19–27CrossRefGoogle Scholar
  95. Sharada R, Venkateswarlu G, Venkateshwar S, Rao MA (2013) Production of cellulase- a review. Int J Pharm Chem Biol Sci 3:1070–1090Google Scholar
  96. Sibanda T, Selvarajan R, Tereke M (2017) Synthetic extreme environments: overlooked sources of potential biotechnologically relevant microorganisms. Microb Biotechnol 10:570–585PubMedPubMedCentralCrossRefGoogle Scholar
  97. Silva DF, Carvalho AFA, Shinya TY, Mazali GS, Herculano RD, Oliva-Neto P (2017) Recycle of immobilized endocellulases in different conditions for cellulose hydrolysis. Enzym Res 2017:1–18CrossRefGoogle Scholar
  98. Singh A, Patel AK, Adsul M, Mathur A, Singhania RR (2017) Genetic modification: a tool for enhancing cellulase secretion. Biofuel Res J 14:600–610CrossRefGoogle Scholar
  99. Sizova MV, Izquierdo JA, Panikov NS, Lynd LR (2011) Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl Environ Microbiol 77:2282–2291PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sohail M, Ahmad A, Khan SA (2016) Production of cellulase from Aspergillus terreus MS105 on crude and commercially purified substrates. 3 Biotech 6:1–8CrossRefGoogle Scholar
  101. Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015) Application of cellulases in biofuels industries: an overview. J Biofuel Bioenerg 1:55–63CrossRefGoogle Scholar
  102. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases: production, applications and challenges. J Sci Ind Res 64:832–844Google Scholar
  103. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefGoogle Scholar
  104. Thayer DW, Lowther SV, Phillips JG (1984) Cellulolytic activities of strains of the genus Cellulomonas. Int J Syst Bacteriol 34:432–438CrossRefGoogle Scholar
  105. Tsai CT, Meyer AS (2014) Enzymatic cellulose hydrolysis: enzyme reusability and visualization of β-Glucosidase immobilized in calcium alginate. Molecules 19:19390–19406PubMedCrossRefGoogle Scholar
  106. Virkajarvi I, Niemela MV, Hasanen A, Teir A (2009) Cellulosic ethanol via biochemical processing poses a challenge for developers and implementers. Bioresources 4:1718–1735Google Scholar
  107. Vu VH, Pham TA, Kim K (2011) Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Microbiology 39:20–25Google Scholar
  108. Walter S, Schrempf H (1995) Studies of Streptomyces reticuli cel-1 (cellulase) gene expression in Streptomyces strains, Escherichia coli, and Bacillus subtilis. Appl Environ Microbiol 61:487–494PubMedPubMedCentralGoogle Scholar
  109. Xi J, Du W, Zhong L (2013) Probing the interaction between cellulose and cellulase with a nanomechanical sensor. In: Van de Ven T, Godbout L (eds) Cellulose – medical, pharmaceutical and electronic applications. InTech, Rijeka, pp 125–140Google Scholar
  110. Xianzhen L (1997) Streptomyces cellulolyticus sp. nov., a new cellulolytic member of the genus Streptomyces. Int J Syst Bacteriol 47:443–445CrossRefGoogle Scholar
  111. Yanez-S M, Rojas J, Castro J, Ragauskas A, Baeza J, Freer J (2013) Fuel ethanol production from Eucalyptus globulus wood by autocatalized organosolv pretreatment ethanol–water and SSF. J Chem Technol Biotechnol 88:39–48CrossRefGoogle Scholar
  112. Yang B, Dai Z, Ding SY, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuel 2:421–450CrossRefGoogle Scholar
  113. Yang C, Xia Y, Qu H, Li AD, Liu R, Wang Y, Zhang T (2016) Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol Biofuels 9:1–12CrossRefGoogle Scholar
  114. Yao G, Li Z, Gao L, Wu R, Kan Q, Liu G, Qu Y (2015) Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels 8:1–16CrossRefGoogle Scholar
  115. Yao G, Wu R, Kan Q, Gao L, Liu M, Yang P, Du L, Li Z, Qu Y (2016) Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum. Biotechnol Biofuels 9:1–11CrossRefGoogle Scholar
  116. Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production and applications. In: Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers. Wiley, Hoboken, pp 131–146CrossRefGoogle Scholar
  117. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481CrossRefGoogle Scholar
  118. Zhang J, Zhong Y, Zhao X, Wang T (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artifical cellobiohydrolase 1 promoter. Bioresour Technol 101:9815–9818PubMedCrossRefGoogle Scholar
  119. Zhang J, Shi H, Xu L, Zhu X, Li X (2015) Site-directed mutagenesis of a hyperthermophilic endoglucanase Cel12B from Thermotoga maritima based on rational design. PLoS ONE 10:1–14Google Scholar
  120. Zhong L, Matthews JF, Crowley MF, Rignall T, Talón C et al (2008) Interactions of the complete cellobiohydrolase I from Trichoderma reesei with microcrystalline cellulose Iβ. Cellulose 15:261–273CrossRefGoogle Scholar
  121. Zhuang J, Machant MA, Nokes SE, Strobel HJ (2007) Economic analysis of cellulase production methods for bioethanol. Appl Eng Agric 23:679–687CrossRefGoogle Scholar
  122. Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Lavarone AT, Cate JHD, Glass NL (2012) Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. PNAS 109:6012–6017PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anita Saini
    • 1
  • Neeraj K. Aggarwal
    • 1
  • Anita Yadav
    • 2
  1. 1.Department of MicrobiologyKurukshetra UniversityKurukshetraIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia

Personalised recommendations