Microbial Metagenomics for Industrial and Environmental Bioprospecting: The Unknown Envoy

  • Daljeet Singh Dhanjal
  • Deepansh Sharma


Microorganisms grown as laboratory strains have been the starting approach for the discovery of various industrially viable molecules now in use. Metagenomics, which exploits culture-independent approach to access the combined genomes of environmental microbial populations, offers a resource of exploring the microbial metabolites derived from the large pool of microorganisms that are known to exist in the environment but remain obstinate to laboratory culturing. Highly specific, tailor-made, novel microbial metabolites have been obtained using metagenomic methods for industrial and environmental sustainability. The application of microbial metagenomics is not limited to the population ecology but can also have huge scope for pharmaceutical and environmental sustainability. Thus, now the analysis in the real time about the expression of the particular gene is to be studied for the activity, efficacy, consistency and specificity. Combined exertions linking researchers from diverse fields comprising microbial genetics, genomics, bioinformatics and synthetic biology will be expected to be essential to the commendable potential of these unknown envoys for a sustainable future. The current developments in microbial metagenomics to the discovery of industrial important molecules will be discussed in the current book chapter.


Bioprospecting Industrial enzyme Metagenomics Metabolites Microbial diversity 


  1. Aakvik T, Degnes KF, Dahlsrud R, Schmidt F, Dam R, Yu L, Völker U, Ellingsen TE, Valla S (2009) A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species. FEMS Microbiol Lett 296(2):149–158PubMedCrossRefGoogle Scholar
  2. Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J (2009) Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J 3(2):243–251PubMedCrossRefGoogle Scholar
  3. Apolinar–Hernández MM, Peña–Ramírez YJ, Pérez-Rueda E, Canto-Canché BB, De los Santos-Briones C, O’Connor-Sánchez A (2016) Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water. Gene 593(1):154–161PubMedCrossRefGoogle Scholar
  4. Banik JJ, Brady SF (2010) Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr Opin Microbiol 13(5):603–609PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bashir Y, Pradeep Singh S, Kumar Konwar B (2014) Metagenomics: an application based perspective. Chinese J Biol 2014:1CrossRefGoogle Scholar
  6. Bhat A, Riyaz-Ul-Hassan S, Srivastava N, Johri S (2015) Molecular cloning of rhodanese gene from soil metagenome of cold desert of north-west Himalayas: sequence and structural features of the rhodanese enzyme. 3 Biotech 5(4):513–521PubMedCrossRefGoogle Scholar
  7. Biver S, Vandenbol M (2013) Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J Ind Microbiol Biotechnol 40(2):191–200PubMedCrossRefGoogle Scholar
  8. Biver S, Portetelle D, Vandenbol M (2013) Characterization of a new oxidant-stable serine protease isolated by functional metagenomics. Springplus 2(1):410CrossRefGoogle Scholar
  9. Burch AY, Shimada BK, Browne PJ, Lindow SE (2010) Novel high-throughput detection method to assess bacterial surfactant production. Appl Environ Microbiol 76(16):5363–5372PubMedPubMedCentralCrossRefGoogle Scholar
  10. Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20(1):37–45PubMedCrossRefGoogle Scholar
  11. Chang FY, Brady SF (2013) Discovery of indolotryptoline antiproliferative agents by homology-guided metagenomic screening. Proc Natl Acad Sci 110(7):2478–2483PubMedCrossRefGoogle Scholar
  12. Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1(2):e24PubMedCentralCrossRefPubMedGoogle Scholar
  13. Cheng F, Sheng J, Cai T, Jin J, Liu W, Lin Y, Du Y, Zhang M, Shen L (2012) A protease-insensitive feruloyl esterase from China Holstein cow rumen metagenomic library: expression, characterization, and utilization in ferulic acid release from wheat straw. J Agric Food Chem 60(10):2546–2553PubMedCrossRefGoogle Scholar
  14. Cheng J, Romantsov T, Engel K, Doxey AC, Rose DR, Neufeld JD, Charles TC (2017) Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences. PLoS One 12(3):e0172545PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chu X, He H, Guo C, Sun B (2008) Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl Microbiol Biotechnol 80(4):615–625PubMedCrossRefGoogle Scholar
  16. Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A (2015) Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front Microbiol 6:672PubMedPubMedCentralCrossRefGoogle Scholar
  17. Courtois S, Cappellano CM, Ball M, Francou FX, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS, August PR (2003) Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol 69(1):49–55PubMedPubMedCentralCrossRefGoogle Scholar
  18. Culligan EP, Sleator RD, Marchesi JR, Hill C (2014) Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 5(3):399–412PubMedCrossRefGoogle Scholar
  19. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3(6):470–478PubMedCrossRefGoogle Scholar
  20. de Castro AP, Fernandes GDR, Franco OL (2014) Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Front Microbiol 5:489PubMedPubMedCentralCrossRefGoogle Scholar
  21. de Vos WM, de Vos EA (2012) Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev 70(suppl 1):S45–S56PubMedCrossRefGoogle Scholar
  22. Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD, Steele HL, Reymond JL, Jaeger KE, Streit WR (2006) Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 72(5):3637–3645PubMedPubMedCentralCrossRefGoogle Scholar
  23. Elend C, Schmeisser C, Hoebenreich H, Steele HL, Streit WR (2007) Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. J Biotechnol 130(4):370–377PubMedCrossRefGoogle Scholar
  24. Entcheva P, Liebl W, Johann A, Hartsch T, Streit WR (2001) Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol 67(1):89–99PubMedPubMedCentralCrossRefGoogle Scholar
  25. Faoro H, Glogauer A, Couto GH, de Souza EM, Rigo LU, Cruz LM, Monteiro RA, de Oliveira Pedrosa F (2012) Characterization of a new Acidobacteria-derived moderately thermostable lipase from a Brazilian Atlantic Forest soil metagenome. FEMS Microbiol Ecol 81(2):386–394PubMedCrossRefGoogle Scholar
  26. Feng Z, Chakraborty D, Dewell SB, Reddy BVB, Brady SF (2012) Environmental DNA-encoded antibiotics fasamycins a and B inhibit FabF in type II fatty acid biosynthesis. J Am Chem Soc 134(6):2981–2987PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, dos Santos VAM, Yakimov MM, Timmis KN, Golyshin PN (2005a) Microbial enzymes mined from the Urania deep-sea hypersaline anoxic basin. Chem Biol 12(8):895–904PubMedCrossRefGoogle Scholar
  28. Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM (2005b) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7(12):1996–2010PubMedCrossRefGoogle Scholar
  29. Ferrer M, Martínez-Abarca F, Golyshin PN (2005c) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16(6):588–593PubMedCrossRefGoogle Scholar
  30. Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16(1–2):109–123PubMedCrossRefGoogle Scholar
  31. Fujita MJ, Kimura N, Sakai A, Ichikawa Y, Hanyu T, Otsuka M (2011) Cloning and heterologous expression of the vibrioferrin biosynthetic gene cluster from a marine metagenomic library. Biosci Biotechnol Biochem 75(12):2283–2287PubMedCrossRefGoogle Scholar
  32. Gabor EM, de Vries EJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 44(2):153–163PubMedCrossRefGoogle Scholar
  33. Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68(9):4301–4306PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gloux K, Berteau O, Béguet F, Leclerc M, Doré J (2011) A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci 108(Supplement 1):4539–4546PubMedCrossRefGoogle Scholar
  35. Green BD, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17(3):236–240PubMedCrossRefGoogle Scholar
  36. Gu X, Wang S, Wang S, Zhao LX, Cao M, Feng Z (2015) Identification and characterization of two novel esterases from a metagenomic library. Food Sci Technol Res 21(5):649–657CrossRefGoogle Scholar
  37. Gupta RD, Sharma R (2011) Metagenomics for environmental and industrial microbiology. Sci Cult 77(1–2):27–31Google Scholar
  38. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249PubMedCrossRefGoogle Scholar
  39. Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring Lipolytic activity on Escherichia coli. Appl Environ Microbiol 66(7):3113–3116PubMedPubMedCentralCrossRefGoogle Scholar
  40. Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54(3):703–711PubMedPubMedCentralGoogle Scholar
  41. Homann MJ, Vail RB, Previte E, Tamarez M, Morgan B, Dodds DR, Zaks A (2004) Rapid identification of enantioselective ketone reductions using targeted microbial libraries. Tetrahedron 60(3):789–797CrossRefGoogle Scholar
  42. Hu Y, Liu Y, Li J, Feng Y, Lu N, Zhu B, Xue S (2015) Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library. J Ind Microbiol Biotechnol 42(11):1449–1461PubMedCrossRefGoogle Scholar
  43. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y (2016) A new view of the tree of life. Nat Microbiol 1:16048PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jacobsen CS, Rasmussen OF (1992) Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol 58(8):2458–2462PubMedPubMedCentralGoogle Scholar
  45. Jacquiod S, Demanèche S, Franqueville L, Ausec L, Xu Z, Delmont TO, Dunon V, Cagnon C, Mandic-Mulec I, Vogel TM, Simonet P (2014) Characterization of new bacterial catabolic genes and mobile genetic elements by high throughput genetic screening of a soil metagenomic library. J Biotechnol 190:18–29PubMedCrossRefGoogle Scholar
  46. Jiang C, Ma G, Li S, Hu T, Che Z, Shen P, Yan B, Wu B (2009) Characterization of a novel β-glucosidase-like activity from a soil metagenome. J Microbiol 47(5):542–548PubMedCrossRefGoogle Scholar
  47. Joshi SJ, Desai AJ (2010) Biosurfactant’s role in bioremediation of NAPL and fermentative production. In: Sen R (ed) Biosurfactants, 1st edn. Springer, New York, pp 222–235CrossRefGoogle Scholar
  48. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296(5570):1127–1129PubMedCrossRefGoogle Scholar
  49. Kang CH, Oh KH, Lee MH, Oh TK, Kim BH, Yoon JH (2011) A novel family VII esterase with industrial potential from compost metagenomic library. Microb Cell Factories 10(1):41CrossRefGoogle Scholar
  50. Kennedy J, O’leary ND, Kiran GS, Morrissey JP, O’Gara F, Selvin J, Dobson ADW (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111(4):787–799PubMedCrossRefGoogle Scholar
  51. Kim YJ, Choi GS, Kim SB, Yoon GS, Kim YS, Ryu YW (2006) Screening and characterization of a novel esterase from a metagenomic library. Protein Expr Purif 45(2):315–323PubMedCrossRefGoogle Scholar
  52. Kim M, Lee KH, Yoon SW, Kim BS, Chun J, Yi H (2013) Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform 11(3):102–113PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kimura N (2006) Metagenomics: access to unculturable microbes in the environment. Microbes Environ 21(4):201–215CrossRefGoogle Scholar
  54. Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, Van Der Lelie D, Meyer F, Stevens R, Bailey MJ (2012) Unlocking the potential of metagenomics through replicated experimental design. Nat Biotechnol 30(6):513–520PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15(7):954–959PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lahlou M (2013) The success of natural products in drug discovery. Pharmacol Pharm 4(3A):17CrossRefGoogle Scholar
  57. Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY (2004) Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl Microbiol Biotechnol 65(6):720–726PubMedCrossRefGoogle Scholar
  58. Lee DG, Jeon JH, Jang MK, Kim NY, Lee JH, Lee JH, Kim SJ, Kim GD, Lee SH (2007) Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnol Lett 29(3):465–472PubMedCrossRefGoogle Scholar
  59. Leis B, Angelov A, Mientus M, Li H, Pham VT, Lauinger B, Bongen P, Pietruszka J, Gonçalves LG, Santos H, Liebl W (2015) Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 6:275PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T, Classen T, Pietruzska J, Ehrenreich A, Streit WR, Jaeger KE (2014) Alternative hosts for functional (meta) genome analysis. Appl Microbiol Biotechnol 98(19):8099–8109PubMedCrossRefGoogle Scholar
  61. Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR, Cho KY, Lee SW (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 71(12):7768–7777PubMedPubMedCentralCrossRefGoogle Scholar
  62. Liu J, Jia Z, Li S, Li Y, You Q, Zhang C, Zheng X, Xiong G, Zhao J, Qi C, Yang J (2016) Identification and characterization of a chitin deacetylase from a metagenomic library of deep-sea sediments of the Arctic Ocean. Gene 590(1):79–84PubMedCrossRefGoogle Scholar
  63. Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(6):510–516PubMedCrossRefGoogle Scholar
  64. Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13(6):572–577PubMedCrossRefGoogle Scholar
  65. Martin M, Vandermies M, Joyeux C, Martin R, Barbeyron T, Michel G, Vandenbol M (2016) Discovering novel enzymes by functional screening of plurigenomic libraries from alga-associated Flavobacteriia and Gammaproteobacteria. Microbiol Res 186:52–61PubMedCrossRefGoogle Scholar
  66. Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA, MacNeil IA, Osburne MS (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70(4):2452–2463PubMedPubMedCentralCrossRefGoogle Scholar
  67. Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152(1):39–50PubMedPubMedCentralCrossRefGoogle Scholar
  68. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22(4):611–633PubMedPubMedCentralCrossRefGoogle Scholar
  69. Moran MA, Torsvik VL, Torsvik T, Hodson RE (1993) Direct extraction and purification of rRNA for ecological studies. Appl Environ Microbiol 59(3):915–918PubMedPubMedCentralGoogle Scholar
  70. Nacke H, Will C, Herzog S, Nowka B, Engelhaupt M, Daniel R (2011) Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German biodiversity Exploratories. FEMS Microbiol Ecol 78(1):188–201PubMedCrossRefGoogle Scholar
  71. Nannipieri P, Ascher J, Ceccherini M, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655–670CrossRefGoogle Scholar
  72. Neveu J, Regeard C, DuBow MS (2011) Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Appl Microbiol Biotechnol 91(3):635–644PubMedCrossRefGoogle Scholar
  73. Nyffenegger C, Nordvang RT, Zeuner B, Łężyk M, Difilippo E, Logtenberg MJ, Schols HA, Meyer AS, Mikkelsen JD (2015) Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases. Appl Microbiol Biotechnol 99(19):7997–8009PubMedCrossRefGoogle Scholar
  74. Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7(2–3):57–66CrossRefGoogle Scholar
  75. Ouyang LM, Liu JY, Qiao M, Xu JH (2013) Isolation and biochemical characterization of two novel metagenome-derived esterases. Biotechnol Appl Biochem 169(1):15–28CrossRefGoogle Scholar
  76. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654PubMedPubMedCentralCrossRefGoogle Scholar
  77. Palackal N, Lyon CS, Zaidi S, Luginbühl P, Dupree P, Goubet F, Macomber JL, Short JM, Hazlewood GP, Robertson DE, Steer BA (2007) A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl Microbiol Biotechnol 74(1):113–124PubMedCrossRefGoogle Scholar
  78. Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23(3):135–142PubMedPubMedCentralCrossRefGoogle Scholar
  79. Peng Q, Wang X, Shang M, Huang J, Guan G, Li Y, Shi B (2014) Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production. Microb Cell Factories 13(1):1CrossRefGoogle Scholar
  80. Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Durdenko EV, Lomakina GY, Zavialova MG, Nikolaev EN, Rivkina EM (2016) Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library. FEMS Microbiol Ecol 92(5):fiw046PubMedCrossRefGoogle Scholar
  81. Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci 99(22):14002–14007PubMedCrossRefGoogle Scholar
  82. Piel J (2004) Metabolites from symbiotic bacteria. Nat Prod Rep 21(4):519–538PubMedCrossRefGoogle Scholar
  83. Piel J (2011) Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol 65:431–453PubMedCrossRefGoogle Scholar
  84. Pooja S, Pushpanathan M, Jayashree S, Gunasekaran P, Rajendhran J (2015) Identification of periplasmic α-amlyase from cow dung metagenome by product induced gene expression profiling (pigex). Indian J Microbiol 55(1):57–65CrossRefGoogle Scholar
  85. Popovic A, Hai T, Tchigvintsev A, Hajighasemi M, Nocek B, Khusnutdinova AN, Brown G, Glinos J, Flick R, Skarina T, Chernikova TN (2017) Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Sci Rep 7.
  86. Purohit MK, Singh SP (2009) Assessment of various methods for extraction of metagenomic DNA from saline habitats of coastal Gujarat (India) to explore molecular diversity. Lett Appl Microbiol 49(3):338–344PubMedCrossRefGoogle Scholar
  87. Pushpam PL, Rajesh T, Gunasekaran P (2011) Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express 1(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rabausch U, Juergensen J, Ilmberger N, Böhnke S, Fischer S, Schubach B, Schulte M, Streit WR (2013) Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl Environ Microbiol 79(15):4551–4563PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rankin NJ, Preiss D, Welsh P, Sattar N (2016) Applying metabolomics to cardiometabolic intervention studies and trials: past experiences and a roadmap for the future. Int J Epidemiol 45(5):1351–1371PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71(2):817–825PubMedPubMedCentralCrossRefGoogle Scholar
  91. Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction discovery and optimization of a low pH, thermostable α-amylase. J Biol Chem 277(29):26501–26507PubMedCrossRefGoogle Scholar
  92. Riesenfeld CS, Schloss PD, Handelsman J (2004a) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552.4PubMedCrossRefGoogle Scholar
  93. Riesenfeld CS, Goodman RM, Handelsman J (2004b) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6(9):981–989PubMedCrossRefGoogle Scholar
  94. Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70(4):2429–2436PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14(3):303–310PubMedCrossRefGoogle Scholar
  96. Sharkey FH, Banat IM, Marchant R (2004) Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70(7):3795–3806PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sharma S, Vakhlu J (2014) Metagenomics as advanced screening methods for novel microbial metabolite. In: Harzevili FD, Chen H (eds) Microbial biotechnology progress and trends, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 43–62CrossRefGoogle Scholar
  98. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161PubMedCrossRefGoogle Scholar
  99. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ (2016) The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nature Rev Microbiol 14(5):273–287CrossRefGoogle Scholar
  100. Steele HL, Jaeger KE, Daniel R, Streit WR (2009) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 16(1–2):25–37PubMedCrossRefGoogle Scholar
  101. Tai YT, Foong CP, Najimudin N, Sudesh K (2016) Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach. J Biosci Bioeng 121(4):355–364PubMedCrossRefGoogle Scholar
  102. Thomas T, Gilbert J, Meyer F (2012) Metagenomics-a guide from sampling to data analysis. Microb Inform Exp 2(1):3PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tu Q, He Z, Li Y, Chen Y, Deng Y, Lin L, Hemme CL, Yuan T, Van Nostrand JD, Wu L, Zhou X (2014) Development of HuMiChip for functional profiling of human microbiomes. PLoS One 9(3):e90546PubMedPubMedCentralCrossRefGoogle Scholar
  104. Uchiyama T, Miyazaki K (2010) Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Appl Environ Microbiol 76(21):7029–7035PubMedPubMedCentralCrossRefGoogle Scholar
  105. Uchiyama T, Watanabe K (2007) The SIGEX scheme: high throughput screening of environmental metagenomes for the isolation of novel catabolic genes. Biotechnol Genet Eng Rev 24(1):107–116PubMedCrossRefGoogle Scholar
  106. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23(1):88–93PubMedCrossRefGoogle Scholar
  107. Varjani SJ, Rana DP, Bateja S, Sharma MC, Upasani VN (2014) Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat, India. Int J Inno Res Sci Eng Technol 3(2):9205–9213Google Scholar
  108. Vester JK, Glaring MA, Stougaard P (2014) Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb Cell Factories 13(1):72CrossRefGoogle Scholar
  109. Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2009) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33(1):236–255PubMedCrossRefGoogle Scholar
  110. Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69(10):6235–6242PubMedPubMedCentralCrossRefGoogle Scholar
  111. Walter J, Mangold M, Tannock GW (2005) Construction, analysis, and β-glucanase screening of a bacterial artificial chromosome library from the large-bowel microbiota of mice. Appl Environ Microbiol 71(5):2347–2354PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang GYS, Graziani E, Waters B, Pan W, Li X, McDermott J, Meurer G, Saxena G, Andersen RJ, Davies J (2000) Novel natural products from soil DNA libraries in a streptomycete host. Org Lett 2(16):2401–2404PubMedCrossRefGoogle Scholar
  113. Wang K, Li G, Yu SQ, Zhang CT, Liu YH (2010) A novel metagenome-derived β-galactosidase: gene cloning, overexpression, purification and characterization. Appl Microbiol Biotechnol 88(1):155–165PubMedCrossRefGoogle Scholar
  114. Wang K, Lu Y, Liang WQ, Wang SD, Jiang Y, Huang R, Liu YH (2012) Enzymatic synthesis of Galacto-oligosaccharides in an organic–aqueous biphasic system by a novel β-Galactosidase from a metagenomic library. J Agric Food Chem 60(15):3940–3946PubMedCrossRefGoogle Scholar
  115. Yang C, Xia Y, Qu H, Li AD, Liu R, Wang Y, Zhang T (2016) Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol Biofuels 9(1):138PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yao J, Fan XJ, Lu Y, Liu YH (2011) Isolation and characterization of a novel tannase from a metagenomic library. J Agric Food Chem 59(8):3812–3818PubMedCrossRefGoogle Scholar
  117. Zarafeta D, Moschidi D, Ladoukakis E, Gavrilov S, Chrysina ED, Chatziioannou A, Kublanov I, Skretas G, Kolisis FN (2016) Metagenomic mining for thermostable esterolytic enzymes uncovers a new family of bacterial esterases. Sci Rep 6:1–16Google Scholar
  118. Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci 99(24):15681–15686PubMedCrossRefGoogle Scholar
  119. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Daljeet Singh Dhanjal
    • 1
  • Deepansh Sharma
    • 2
    • 3
  1. 1.School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Department of Microbiology, School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  3. 3.Amity Institute of Microbial TechnologyAmity UniversityJaipurIndia

Personalised recommendations