Advertisement

Insight into Compatible Solutes from Halophiles: Exploring Significant Applications in Biotechnology

  • Kapilesh Jadhav
  • Bijayendra Kushwah
  • Indrani Jadhav
Chapter

Abstract

Halophiles accumulate a restricted range of highly soluble low molecular weight molecules termed compatible solutes, which helps them to cope up with environments of elevated osmolarity. In addition to their stabilizing effects, compatible solute contributes significantly in different biotechnological applications. These include stabilization of biomolecules, stress-protective and therapeutic agents, in cosmeceuticals and pharmaceuticals, as a cryoprotectant of microorganisms, and increasing osmotolerance in non-halotolerant organisms by transforming genes for their synthesis. High solubility and low molecular weight of osmolytes make them potential candidates for bioprocessing and as an attractive proposition toward commercialization. We summarize here the current state of knowledge and applications of compatible solutes in biotechnology.

Keywords

Compatible solutes Cryoprotectant Halophiles Osmolarity Bioprocessing Stress-protectant 

References

  1. Alia Hayashi H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycine betaine. Plant J 16:155–161PubMedCrossRefGoogle Scholar
  2. Baldwin RL (1996) How Hofmeister interactions affect protein stability. Biophys J 71(4):2056–2063PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barth S, Huhn M, Matthey B, Klimka A, Galinski EA, Engert A (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66(4):1572–1579PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bolen DW, Baskakov IV (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310(5):955–963PubMedCrossRefGoogle Scholar
  5. Borges N, Ramos A, Raven ND, Sharp RJ, Santos H (2002) Comparative study of the thermos-stabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6(3):209–216PubMedCrossRefGoogle Scholar
  6. Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch Microbiol 96(1):37–52CrossRefGoogle Scholar
  7. Brigotti M, Petronini PG, Carnicelli D, Alfieri RR, Bonelli MA, Borghetti AF, Wheeler KP (2003) Effects of osmolarity, ions and compatible osmolytes on cell-free protein synthesis. Biochem J 369(2):369–374PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bursy J, Pierik AJ, Pica N, Bremer E (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282(43):31147–31155PubMedCrossRefGoogle Scholar
  9. Chadalavada SV, Kumar R, Suryanarayana T, Reddy RA (1997) Rajendrakumar. DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett, 410 (2-3):201-205.Google Scholar
  10. Cioni P, Bramanti E, Strambini GB (2005) Effects of sucrose on the internal dynamics of azurin. Biophys J 88(6):4213–4222PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cleland D, Krader P, McCree C, Tang J, Emerson D (2004) Glycine betaine as a cryoprotectant for prokaryotes. J Microbiol Methods 58(1):31–38PubMedCrossRefGoogle Scholar
  12. Collins KD, Washabaugh MW (1985) The Hofmeister effect and the behavior of water at interfaces. J Biol Chem 18(4):323–422Google Scholar
  13. Cornacchione S, Sadick NS, Neveu M, Talbourdet S, Lazou K, Viron C, Renimel I, de Quéral D, Kurfurst R, Schnebert S, Heusèle C, André P, Perrier E (2007) In vivo skin antioxidant effect of a new combination based on a specific Vitis vinifera shoot extract and a biotechnological extract. J Drugs Dermatol 6:s8–s13PubMedGoogle Scholar
  14. DasSarma S, Arora P (2002) Halophiles. In: Encyclopedia of life sciences, vol 8. Wiley, Chischester, pp 458–466Google Scholar
  15. Deplats P, Folco E, Salerno GL (2005) Sucrose may play an additional role to that of an osmolyte in Synechocystis sp. PCC 6803 salt-shocked cells. Plant Physiol Biochem 43(2):133–138CrossRefGoogle Scholar
  16. Desmarais D, Jablonski PE, Fedarko NS, Roberts MF (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J Bacteriol 179(10):3146–3153PubMedPubMedCentralCrossRefGoogle Scholar
  17. Detkova EN, Boltyanskaya YV (2007) Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application. Microbiology 76(5):511–522CrossRefGoogle Scholar
  18. Doronina NV, Trotsenko YA, Tourova TP (2000) Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50(5):1849–1859PubMedCrossRefGoogle Scholar
  19. Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34:221–243PubMedCrossRefGoogle Scholar
  20. D’Souza-Ault MR, Smith LT, Smith GM (1993) Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 59(2):473–478PubMedPubMedCentralGoogle Scholar
  21. Fändrich M, Matthew A, Fletcher M, Christopher M, Dobson (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166PubMedCrossRefGoogle Scholar
  22. Galinski EA, Pfeiffer HP, Trüper HG (1985) 1, 4, 5, 6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem 149(1):135–139PubMedCrossRefGoogle Scholar
  23. Gerhardt PN, Smith LT, Smith GM (1996) Sodium-driven, osmotically activated glycine betaine transport in Listeria monocytogenes membrane vesicles. J Bacteriol 178(21):6105–6109PubMedPubMedCentralCrossRefGoogle Scholar
  24. Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407PubMedCrossRefGoogle Scholar
  25. Heinrich U, Garbe B, Tronnier H (2007) In vivo assessment of Ectoin: a randomized, vehicle-controlled clinical trial. Skin Pharmacol Physiol 20(4):211–218PubMedCrossRefGoogle Scholar
  26. Hoeckstra FA, Wolkers WF, Buitink J, Golowina EA, Crowe JH, Crowe LM (1997) Membrane stabilization in the dry state. Comp Biochem Physiol 117(3):335–341CrossRefGoogle Scholar
  27. Holmstrom KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(343):177–185PubMedCrossRefGoogle Scholar
  28. Höppner A, Widderich N, Lenders M, Bremer E, Smits SHJ (2014) Crystal structure of the ectoine hydroxylase, a snapshot of the active site. J Biol Chem 289(43):29570–29583PubMedPubMedCentralCrossRefGoogle Scholar
  29. Imhoff JF, Rodriguez-Valera F (1984) Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol 160(1):478–479PubMedPubMedCentralGoogle Scholar
  30. Javor B (1989) Hypersaline environments: microbiology and biogeochemistry. Springer-Verlag, New York, pp 101–124Google Scholar
  31. Klein J, Schwarz T, Lentzen G (2007) Ectoine as a natural component of food: detection in red smear cheeses. J Dairy Res 74(4):446–451PubMedCrossRefGoogle Scholar
  32. Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176(2):426–431PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kunz W, Henle J, Ninham BW (2004) About the science of the effect of salts: Franz Hofmeister’s historical papers. Curr Opin Coll Interface Sci 9(1–2):19–37CrossRefGoogle Scholar
  34. Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst 4(6):1–14.  https://doi.org/10.1186/1746-1448-4-6 CrossRefGoogle Scholar
  35. Lambert D, Draper DE (2007) Effects of osmolytes on RNA secondary and tertiary structure stabilities and RNA-Mg2+ ion interactions. J Mol Biol 370(5):993–1005PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lindemose S, Nielsen PE, Mollegaard NE (2005) Polyamines preferentially interact with bent adenine tracts in double-stranded DNA. Nucleic Acids Res 33(6):1790–1803PubMedPubMedCentralCrossRefGoogle Scholar
  37. Liu Y, Bolen DW (1995) The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34(39):12884–12891PubMedCrossRefGoogle Scholar
  38. Louis P, Trüper HG, Galinski EA (1994) Survival of Escherichia coli during drying and storage in the presence of compatible solutes. Appl Microbiol Biotechnol 41(6):684–688CrossRefGoogle Scholar
  39. Malin G, Iakobashvili R, Lapidot A (1999) Effect of tetrahydropyrimidine derivatives on protein-nucleic acids interaction. Type II restriction endonucleases as a model system. J Biol Chem 274(11):6920–6929PubMedCrossRefGoogle Scholar
  40. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279PubMedCrossRefGoogle Scholar
  41. Martin DD, Ciulla RA, Robinson PM, Roberts MF (2001) Switching osmolytes strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl. Biochim Biophys Acta 1524(1):1–10PubMedGoogle Scholar
  42. Martin DD, Bartlett DH, Roberts MF (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6(6):507–514PubMedCrossRefGoogle Scholar
  43. Messadek J (2005) Glycine betaine and its use. US Patent, 6855734Google Scholar
  44. Murphy RM (2002) Peptide aggregation in neurodegenerative disease. Annu Rev Biomed Eng 4:155–174PubMedCrossRefGoogle Scholar
  45. Nyyssölä A, Leisola M (2001) Actinopolyspora halophila has two separate pathways for betaine synthesis. Arch Microbiol 176(4):294–300PubMedCrossRefGoogle Scholar
  46. Nyyssölä A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikaiuem T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201PubMedCrossRefGoogle Scholar
  47. Patchett RA, Kelly AF, Kroll RG (1994) Transport of glycine-betaine by Listeria monocytogenes. Arch Microbiol 162(3):205–210PubMedCrossRefGoogle Scholar
  48. Patzelt H (2005) Hydrocarbon degradation under hypersaline conditions. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, DordrechtGoogle Scholar
  49. Petrovic U, Gunde-Cimerman N, Plemenitas A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45(3):665–672PubMedCrossRefGoogle Scholar
  50. Pflughoeft KJ, Kierek K, Watnick PI (2003) Role of ectoine in Vibrio cholerae osmoadaptation. Appl Environ Microbiol 69(10):5919–5927PubMedPubMedCentralCrossRefGoogle Scholar
  51. Plaza di Pino IM, Sanchez-Ruiz JM (1995) An osmolyte effect on the heat capacity change for protein folding. Biochemistry 34(27):8621–8630CrossRefGoogle Scholar
  52. Rajendrakumar CS, Suryanarayana T, Reddy AR (1997) DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett 410(2–3):201–205PubMedCrossRefGoogle Scholar
  53. Regev R, Peri I, Gilboa H, Avi-Dor Y (1990) 13C NMR study of the interrelation between synthesis and uptake of compatible solutes in two moderately halophilic eubacteria, Bacterium Ba1 and Vibro costicola. Arch Biochem Biophys 278(1):106–112PubMedCrossRefGoogle Scholar
  54. Roberts FM (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1(5):1–30.  https://doi.org/10.1186/1746-1448-1-5 CrossRefGoogle Scholar
  55. Roberts FM, Choi BS, Robertson DE, Lesage S (1990) Free amino acid turnover in methanogens measured by 15N NMR spectroscopy. J Biol Chem 265(30):18207–18212PubMedGoogle Scholar
  56. Robertson DE, Noll D, Roberts MF, Menaia JA, Boone DR (1990) Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol 56(2):563–565PubMedPubMedCentralGoogle Scholar
  57. Robertson DE, Lai M-C, Gunsalus RP, Roberts MF (1992a) Composition, variation, and dynamics of major compatible solutes in Methanohalophilus strain FDF1. Appl Environ Microbiol 58(8):2438–2443PubMedPubMedCentralGoogle Scholar
  58. Robertson DE, Noll D, Roberts MF (1992b) Free amino acid dynamics in marine methanogens. Β-Amino acids as compatible solutes. J Biol Chem 267(21):14893–14901PubMedGoogle Scholar
  59. Roder A, Hoffmann E, Hagemann M, Berg G (2005) Synthesis of the compatible solutes glucosylglycerol and trehalose by salt stressed cells of Stenotrophomonas strains. FEMS Microbiol Lett 243(1):219–226PubMedCrossRefGoogle Scholar
  60. Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4(1):49–56PubMedCrossRefGoogle Scholar
  61. Santosh H, da Costa MS (2001) Organic solutes from thermophiles and hyperthermophiles. Methods Enzymol 334:302–315CrossRefGoogle Scholar
  62. Schnoor M, Voss P, Cullen P, Boking T, Galla HJ, Galinski EA, Lorkowski S (2004) Characterization of the synthetic compatible solute homoectoine as a potent PCR enhancer. Biochem Biophys Res Commun 322(3):867–872PubMedCrossRefGoogle Scholar
  63. Schwinefus JJ, Kuprian MJ, Lamppa JW, Merker WE, Dorn KN, Muth GW (2007) Human telomerase RNA pseudoknot and hairpin thermal stability with glycine betaine and urea: preferential interactions with RNA secondary and tertiary structures. Biochemistry 46(31):9068–9079PubMedCrossRefGoogle Scholar
  64. Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3(2):163–172PubMedCrossRefGoogle Scholar
  65. Singh LR, Poddar NK, Dar TA, Kumar R, Ahmad F (2011) Protein and DNA destabilization by osmolytes: the other side of the coin. Life Sci 88(3–4):117–125PubMedCrossRefGoogle Scholar
  66. Smith LT, Smith GM (1989) An osmoregulated dipeptide in stressed Rhizobium meliloti. J Bacteriol 171(9):4714–4717PubMedPubMedCentralCrossRefGoogle Scholar
  67. Sowers KR, Robertson DE, Noll D, Gunsalus RP, Roberts MF (1990) N,-acetyl-β-lysine: an osmolyte synthesized by methanogenic archaebacteria. Proc Natl Acad Sci U S A 87(23):9083–9087PubMedPubMedCentralCrossRefGoogle Scholar
  68. Tanne C, Golovina EA, Hoekstra FA, Meffert A, Galinski EA (2014) Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant. Front Microbiol 5:150PubMedPubMedCentralCrossRefGoogle Scholar
  69. Timasheff SN (2002) Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci U S A 99(15):9721–9726PubMedPubMedCentralCrossRefGoogle Scholar
  70. Weissensteiner T, Lanchbury JS (1996) Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. BioTechniques 21(6):1102–1108PubMedCrossRefGoogle Scholar
  71. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kapilesh Jadhav
    • 1
  • Bijayendra Kushwah
    • 2
  • Indrani Jadhav
    • 2
  1. 1.School of Engineering and TechnologyJaipur National UniversityJaipurIndia
  2. 2.School of Life Sciences, Jaipur National UniversityJaipurIndia

Personalised recommendations