Advertisement

Inulinase: An Important Microbial Enzyme in Food Industry

  • Anand Mohan
  • Bableen Flora
  • Madhuri Girdhar
Chapter

Abstract

Inulinases are industrial food enzymes which have earned vast attention recently. Inulin and inulin-containing materials are sustainable, economical polymeric carbohydrates which can be easily hydrolysed by microbial inulinases into fructose, glucose and inulooligosaccharides. The inulinase gene can also be cloned and can be used in the production of bioethanol, single-cell oil, and single-cell protein utilizing inulin as the substrate in many species of yeast. The utilization of inulin is immense for the production of monomeric fructose units, and it has replaced starch in many food industries with multiple applications. Plants like agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, Jerusalem artichoke, etc. are richest source of inulin. Inulin showed encouraging biorefinery approach in which inulin-containing waste, produced with the help of microorganisms has been used to yield biofuels including renewable gas, renewable diesel and further for the production of electricity.

Keywords

Inulinase Bioethanol Single-cell oil Inulooligosaccharides 

References

  1. Chi Z-M, Zhang T, Cao T-S, Liu X-Y, Cui W, Zhao C-H (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 102:4295–4303CrossRefGoogle Scholar
  2. Coitinho JB, Guimaraes VRM, Den Almeida MN, Falkoski DL (2010) Characterization of an Exoinulinase produced by Aspergillusterreus CCT4083 grown on sugar cane bagasse. J Agric Food Chem 58:8386–8391CrossRefGoogle Scholar
  3. Dinarvand M, Rezaee M, Foroughi M (2017) Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM). Braz J Microbiol 48(3):427–441CrossRefGoogle Scholar
  4. de Oliveira Kuhn G, Silva MF, Mulinari J, Golunski S, Dallago RM, Rosa CD (2016) Aspergillus niger inulinase immobilized in polyurethane foam and treated in pressurized LPG: A potential catalyst for enzymatic synthesis of fructooligosaccharides. Biocatal Biotransform 34:291–294. https://doi.org/10.1080/10242422.2016.1247826 CrossRefGoogle Scholar
  5. Drent WJ, Lahpor GA, Wiegant WM, Gottschal JC (1991) Fermentation of inulin by Clostridium thermosuccinogenes sp. nov., a thermophilic anaerobic bacterium isolated from various habitats. Appl Environ Microbiol 57(2):455–462PubMedPubMedCentralGoogle Scholar
  6. Fleming SE, GrootWassink JWD, Donald Murray E (2009) Preparation of high‐fructose syrup from the tubers of the Jerusalem artichoke (Helianthus tuberosus L.). C R C Crit Rev Food Sci Nutr 12:1–28. https://doi.org/10.1080/10408397909527271 CrossRefGoogle Scholar
  7. Gao L, Chi Z, Sheng J et al (2007) Inulinase-producing marine yeasts: evaluation of their diversity and inulin hydrolysis by their crude enzymes. Microb Ecol 54:722. https://doi.org/10.1007/s00248-007-9231-4 CrossRefGoogle Scholar
  8. Gao W, Bao Y, Liu Y et al (2009) Characterization of thermo-stable endoinulinase from a new strain Bacillus Smithii T7. Appl Biochem Biotechnol 157:498. https://doi.org/10.1007/s12010-008-8313-1CrossRefGoogle Scholar
  9. Ge X-Y, Qian H, Zhang W-G (2009) Improvement of L-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresour Technol 100:1872–1874CrossRefGoogle Scholar
  10. Gong F, Sheng J, Chi Z et al (2007) Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. J Ind Microbiol Biotechnol 34:179. https://doi.org/10.1007/s10295-006-0184-2CrossRefGoogle Scholar
  11. Gupta AK, Rathore P, Kaur N, Sing R (1990) Production, thermal stability and immobilization of inulinase from Fusarium oxysporum. J Chem Technol Biotechnol 47:245–257CrossRefGoogle Scholar
  12. Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25(3):165–212CrossRefGoogle Scholar
  13. Liu X-Y, Chi Z, Liu G-L, Wang F, Madzak C, Chi Z-M (2010) Inulin hydrolysis and citric acid production from inulin using the surface-engineered Yarrowia lipolytica displaying inulinase. Metab Eng 12(5):469–476CrossRefGoogle Scholar
  14. López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L, Campos-García J (2012) Ethanol yield and volatile compoundcontent in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’syeast used in tequila production. J Biosci Bioeng 113(5):614–618CrossRefGoogle Scholar
  15. Lu WD, Li AX, Guo QL (2014) Production of novel alkalitolerant and thermostable inulinase from marine actinomycete Nocardiopsis sp. DN-K15 and inulin hydrolysis by the enzyme. Ann Microbiol 64(2):441–449CrossRefGoogle Scholar
  16. Marina Holyavka VA (2016) Structural and functional properties of inulinases: a review. Biocatal Biotransformation 34(1):1–17CrossRefGoogle Scholar
  17. Miremadi F, Shah NP (2012) Applications of inulin and probiotics in health and nutrition. Int Food Res J 19(4):1337–1350Google Scholar
  18. Pandey A, Soccol CR, Selvakumar P et al (1999) Recent developments in microbial inulinases: its production, properties, and industrial applications. Appl Biochem Biotechnol 81:35. https://doi.org/10.1385/ABAB:81:1:35CrossRefGoogle Scholar
  19. Pawan GLS (1973) Fructose. In: Brich GC, Green LF (eds) Molecular structure and function of food carbohydrates. Applied Science, London, pp 65–80Google Scholar
  20. Rakicka M, Rywińsk A, Rymowicz W (2016) Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using Yarrowia lipolytica expressing inulinase. Chem Pap 70:1452–1459. https://doi.org/10.1515/chempap-2016-0085Google Scholar
  21. Rouwenhorst* RJ, Visser LE, Adriaan A, Van Der Baan, Alexander Scheffers W, Johannes P, Dijken V (1988) Production, distribution, and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Appl Environ Microbiol 54(5):1131–1137Google Scholar
  22. Sheng J, Chi Z, Yan K, Wang X, Gong F, Li J (2009) Use of response surface methodology for optimization of process parameters for high inulinase production by the marine yeast Cryptococcus aureus G7a in solid state fermentation and hydrolysis of inulin. Bioprocess Biosyst Eng 32:333–339CrossRefGoogle Scholar
  23. Singh RS, Sooch BS, Puri M (2007) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresour Technol 98:2518–2525CrossRefGoogle Scholar
  24. Sirisansaneeyakul S, Worawuthiyanan N, Vanichsriratana W, Srinophakun P, Chisti Y (2007) Production of fructose from inulin using mixed inulinases from Aspergillus Niger and Candida guilliermondii. World J Microbiol Biotechnol 23(4):543–552CrossRefGoogle Scholar
  25. Vandamme EJ, Derycke DG (1983) Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29(1983):139–176Google Scholar
  26. Wei W, Wi K, Qin Y, Xie Z, Zhu X (2001) Intergenic protoplast fusion between Kluyveromycesand Saccharomyces cerevisiae to produce sorbitol from Jerusalem artichokes. Biotechnol Lett 23:799–803CrossRefGoogle Scholar
  27. Yépez Silva-Santisteban BO, Maugeri Filho F (2005) Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzyme Microbiol Technol 36:717–724CrossRefGoogle Scholar
  28. Yépez Silva-Santisteban BO, Converti A, Maugeri Filho F (2009) Effects of carbon and nitrogen sources and oxygenation on the production of inulinase by Kluyveromyces marxianus. Appl Biochem Biotechnol 152:249–261CrossRefGoogle Scholar
  29. Yu X, Guo N, Chi Z, Gong F, Sheng J, Chi Z (2009) Inulinase overproduction by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. Biochem Eng J 43:266–271CrossRefGoogle Scholar
  30. Yu J, Jiang J, Ji W et al (2011) Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain. Biotechnol Lett 33:147. https://doi.org/10.1007/s10529-010-0414-6 CrossRefGoogle Scholar
  31. Zhao C-H, Zhang T, Li M, Chi Z-M (2010) Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem 45:1121–1126CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anand Mohan
    • 1
  • Bableen Flora
    • 1
  • Madhuri Girdhar
    • 2
  1. 1.School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Department of BiotechnologyCT Group of InstitutionJalandharIndia

Personalised recommendations