Advertisement

Microbial Transformation of Sulphur: An Approach to Combat the Sulphur Deficiencies in Agricultural Soils

  • Bholanath Saha
  • Sushanta Saha
  • Partha Deb Roy
  • Dhaneshwar Padhan
  • Sajal Pati
  • Gora Chand Hazra
Chapter

Abstract

Sulphur, an essential component for plant as well as animals, is present in soils in both organic and inorganic forms, with organic form particularly sulphate esters and carbon-bonded sulphur contributing ~75–90% of the total. The major sources of sulphur in soils are sulphur-containing minerals, plant and elemental residue and external addition including atmospheric deposition. Sulphur deficiency in plants results in poor nitrogen metabolism thus protein biosynthesis, chlorosis, low oil percentage and ultimately low yield. The conversion of organic sulphur in organic matter to inorganic form and vice versa is dominantly a microbiological process. In well-aerated soil, organic sulphur is mineralized to sulphate and taken up by plants. Concurrently inorganic sulphur is immobilized to organic form and incorporated in microbial tissue. The rate of these processes obviously depends on soil reaction, temperature, moisture and addition of crop residue and many other factors that ultimately affect the activity of microorganism. Several enzymes in soil, viz. arylsulphatase, play a major role in sulphur mineralization process though very little information is available till now towards the pathway of decomposition. In addition to this process, inorganic sulphur in soil undergoes various oxidation and reduction process, modulated by microorganisms. Various reduced inorganic sulphur compounds are oxidized by a group of bacteria in suitable condition and utilize the energy. The wide range of stable redox states and their interconversion affect sulphur cycle, fate of applied fertilizer and ultimately its availability to plants and microbes. In this chapter we reviewed the sulphur cycle and its transformation by various microbial processes.

Keywords

Microbial transformation Sulphur cycling Microorganisms Sustainable crop production 

Notes

Acknowledgement

Authors are grateful to Prof. Biswapati Mandal, Dept. of Soil Science and Agricultural Chemistry, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal-741252, India, for his guidance in critically reviewing the manuscript.

References

  1. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313.  https://doi.org/10.1007/978-81-322-2776-2_21 CrossRefGoogle Scholar
  2. Aragono M (1991) Aerobic chemolithoautotrophic bacteria. In: Christjansson JK (ed) Thermophilic bacteria. CRC Press, Boca Raton, pp 7–103Google Scholar
  3. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  4. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266.  https://doi.org/10.1007/978-81-322-2776-2_18 CrossRefGoogle Scholar
  5. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J 34(5):456–466.  https://doi.org/10.1080/01490451.2016.1219431 CrossRefGoogle Scholar
  6. Balota EL, Filho AC, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fert Soils 38(1):15–20CrossRefGoogle Scholar
  7. Barton LL, Fauque AJ (2009) Biochemistry, physiology and biotechnology of sulphate reducing bacteria. Adv Appl Microbiol 68:41–98CrossRefPubMedGoogle Scholar
  8. Bauld J (1986) Transformation of sulphur species by phototrophic and chemotrophic microbes. In: The importance of chemical “speciation” in environmental processes. Springer, Berlin/Heidelberg, pp 255–274CrossRefGoogle Scholar
  9. Behera BC, Mishra RR, Dutta SK, Thatoi HN (2014) Sulphur oxidizing bacteria in mangrove ecosystem: a review. African J Biotech 13(29):2897–2907CrossRefGoogle Scholar
  10. Chapman SJ (1987) Microbial sulphur in some Scottish soils. Soil Biol Biochem 19:301–305CrossRefGoogle Scholar
  11. Chien SH, Gearhart MM, Villagarcía S (2011) Comparison of ammonium sulphate with other nitrogen and sulphur fertilizers in increasing crop production and minimizing environmental impact: a review. Soil Sci 176(7):327–335CrossRefGoogle Scholar
  12. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291.  https://doi.org/10.1007/978-81-322-2776-2_20 CrossRefGoogle Scholar
  13. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98.  https://doi.org/10.1007/978-81-322-2776-2_6 CrossRefGoogle Scholar
  14. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280.  https://doi.org/10.1007/978-81-322-2776-2_19 CrossRefGoogle Scholar
  15. Fitzgerald JW (1978) Naturally occurring organo sulphur compound in soil. In: Nriagu JO (ed) Sulphur in the environment. Ecological impacts, Part II. Wiley, New York, pp 391–443Google Scholar
  16. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic compounds by bacteria: emergence of a common mechanism. Appl Environ Microbiol 67(7):2873–2882CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulphur supply. Front Plant Sci 5:723.  https://doi.org/10.3389/fpls.2014.00723 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gharmakher NH, Piutti S, Machet JM, Benizri E, Recous S (2012) Mineralization-immobilization of sulphur in a soil during decomposition of plant residues of varied chemical composition and S content. Plant Soil 360(1):391–404CrossRefGoogle Scholar
  19. Gupta VVSR, Lawrence JR, Germida JJ (1988) Impact of elemental sulphur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. Can J Soil Sci 68:463–473CrossRefGoogle Scholar
  20. Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386(1–2):1–9.  https://doi.org/10.1007/s11104-014-2162-1 CrossRefGoogle Scholar
  21. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29.  https://doi.org/10.1007/978-81-322-2776-2_2 CrossRefGoogle Scholar
  22. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  23. Jez J (2008) Sulphur: a missing link between soils, crops, and nutrition. American Society of Agronomy, ASA-CSSA-SSSA, Madison, p 323Google Scholar
  24. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162.  https://doi.org/10.1007/978-81-322-2776-2_11 CrossRefGoogle Scholar
  25. Karimizarchi M, Aminuddin H, Khanif MY, Radziah O (2014) Elemental sulphur application effects on nutrient availability and sweet maize (Zea mays L.) response in a high pH soil of Malaysia. Mal J Soil Sci 18:75–86Google Scholar
  26. Keppler U, Bennet B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG, Dahl C (2000) Sulfit: cytochrome c oxidoreductase from Thiobacillus novellus, purification, characterization and molecular biology of a heterodimeric member of sulfite oxidase family. J Biol Chem 275(18):13202–13212CrossRefGoogle Scholar
  27. Kertesz MA, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55(404):1939–1945CrossRefPubMedGoogle Scholar
  28. Klose S, Moore JM, Tabatabai MA (1999) Arylsulphatase activity of microbial biomass in soils as affected by cropping systems. Biol Fertil Soils 29:46–54.  https://doi.org/10.1007/s003740050523 CrossRefGoogle Scholar
  29. Kovar JL, Grant CA (2011) Nutrient cycling in soils: sulphur. Publications from USDA-ARS/UNL Faculty, Paper 1383Google Scholar
  30. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724Google Scholar
  31. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  32. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75.  https://doi.org/10.1007/978-81-322-2776-2_5 CrossRefGoogle Scholar
  33. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul 36(3):608–617.  https://doi.org/10.1007/s00344-016-9663-5 CrossRefGoogle Scholar
  34. Lamers LPM, van Diggelen JMH, den Camp HJMO, Visser EJW, Lucassen ECHET, Vile MA, Jetten MSM, Smolders AJP, Roelofs JGM (2012) Microbial transformations of nitrogen, sulphur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol 3:156.  https://doi.org/10.3389/fmicb.2012.00156 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Madigan MT, Martinko JM (2006) Brock biology of microorganisms. Pearson Prentice Hall, Upper Saddle River, p 1056Google Scholar
  36. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147.  https://doi.org/10.1007/978-81-322-2776-2_10 CrossRefGoogle Scholar
  37. Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  38. McLaren RG, Keer JJ, Swift RW (1985) Sulphur transformations in soils using sulphur-35 labelling. Soil Biol Biochem 17:73–79CrossRefGoogle Scholar
  39. Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56Google Scholar
  40. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12Google Scholar
  41. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935Google Scholar
  42. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237Google Scholar
  43. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347CrossRefGoogle Scholar
  44. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  45. Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  46. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  47. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  48. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563.  https://doi.org/10.1016/j.jclepro.2015.04.044 CrossRefGoogle Scholar
  49. Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557.  https://doi.org/10.1016/j.jclepro.2015.04.030 CrossRefGoogle Scholar
  50. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811Google Scholar
  51. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  52. Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  53. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20.  https://doi.org/10.1007/978-81-322-2776-2_1 CrossRefGoogle Scholar
  54. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  55. Muzer G, Stams AJ (2008) The ecology of biotechnology of sulphate-reducing bacteria. Nat Rev Micriobiol 6:441–454CrossRefGoogle Scholar
  56. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  57. Pasricha NS, Sarkar AK (2002) Secondary nutrients. In: Sekhon GS, Chhonkar PK, Das DK, Goswami NN, Narayanasamy G, Poonia SR, Rattan RK, Sehgal J (eds) Fundamentals of soil science. Indian Society of Soil Science, New Delhi, pp 381–389Google Scholar
  58. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331.  https://doi.org/10.1007/978-81-322-2776-2_23 CrossRefGoogle Scholar
  59. Prasad R, Shivay YS (2016) Sulphur in soil, plant and human nutrition. Proc Natl Acad Sci India Sect B Biol Sci:1–6.  https://doi.org/10.1007/s40011-016-0769-0
  60. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125.  https://doi.org/10.1007/978-81-322-2776-2_8 CrossRefGoogle Scholar
  61. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59.  https://doi.org/10.1007/978-81-322-2776-2_4 CrossRefGoogle Scholar
  62. Rajvaidya N, Markandey DK (2006) Genetical and biochemical applications of microbiology. Microbial genetics. APH Publishing, New Delhi, p 345Google Scholar
  63. Rao CNR (1999) Understanding chemistry. University Press (India) Ltd., HyderabadGoogle Scholar
  64. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253.  https://doi.org/10.1007/978-81-322-2776-2_17 CrossRefGoogle Scholar
  65. Richardson AE, Barea JM, Mcneill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339.  https://doi.org/10.1007/s11104009-9895-2 CrossRefGoogle Scholar
  66. Roy AB, Trudinger PA (1970) The biochemistry of inorganic compounds of sulphur. Cambridge University Press, Cambridge, p 399Google Scholar
  67. Saggar S, Bettany JR, Stewart JWB (1981) Measurement of microbial sulphur in soil. Soil Biol Biochem 13:493–498CrossRefGoogle Scholar
  68. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136.  https://doi.org/10.1007/978-81-322-2776-2_9 CrossRefGoogle Scholar
  69. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209Google Scholar
  70. Sahrawat KL, Murthy KVS, Wani SP (2009) Comparative evaluation of ca chloride and ca phosphate for extractable sulphur in soils with a wide range in pH. J Plant Nutr Soil Sci 172:404–407CrossRefGoogle Scholar
  71. Setter KO, Fiala G, Huber G, Huber H, Segerer A (1990) Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124CrossRefGoogle Scholar
  72. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219.  https://doi.org/10.1007/978-81-322-2776-2_15 CrossRefGoogle Scholar
  73. Shinde DB, Patil PL, Patil BR (1996) Potential use of sulphur oxidizing microorganisms as soil inoculants. Crop Res 11:291–295Google Scholar
  74. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234.  https://doi.org/10.1007/978-81-322-2776-2_16 CrossRefGoogle Scholar
  75. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185.  https://doi.org/10.1007/978-81-322-2776-2_13 CrossRefGoogle Scholar
  76. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99.  https://doi.org/10.5958/2229-4473.2015.00012.9 CrossRefGoogle Scholar
  77. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134.  https://doi.org/10.1007/978-981-10-2558-7_4 CrossRefGoogle Scholar
  78. Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollagand JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, Inc, New York, pp 357–396Google Scholar
  79. Solomon D, Lehmann J, de Zarruk KK, Dathe J, Kinyangi J, Liang B, Machado S (2010) Speciation and long- and short-term molecular level dynamics of soil organic sulphur studied by X-ray absorption near-edge structure spectroscopy. J Environ Qual.  https://doi.org/10.2134/jeq2010.0061
  80. Stahl WH, McQue B, Mandels GR, Siu RGH (1949) Studies on the microbiological degradation of wool. I. Sulfur metabolism. Arch Biochem 20:422–432PubMedGoogle Scholar
  81. Starkey RL (1950) Relation of microorganisms to transformation of sulphur in soils. Soil Sci 70:55CrossRefGoogle Scholar
  82. Stevenson FJ (1982) Humus chemistry. Wiley, New YorkGoogle Scholar
  83. Strick JE, Nakas JP (1984) Calibration of a microbial sulphur technique for use in forest soils. Soil Biol Biochem 16:289–291CrossRefGoogle Scholar
  84. Strickland TC, Fitzgerald JW, Swank WT (1986) In situ measurements of sulphate incorporation into forest floor and soil organic matter. Can J For Res 16:549–553CrossRefGoogle Scholar
  85. Strickland TC, Fitzgerald JW, Ash JT, Swank WT (1987) Organic sulphur transformations and sulphur pool sizes in soil and litter from a southern appalachian hardwood forest. Soil Sci 143(6):453–458CrossRefGoogle Scholar
  86. Tabatabai MA, Bremner JM (1970) Factors affecting soil arylsulphatase activity. Soil Sci Soc Am Proc 34:427–429CrossRefGoogle Scholar
  87. Tandon HLS (2011) Sulphur in soils, crops and fertilizers. Fertilizer Development and Consultation Organization (FDCO), New DelhiGoogle Scholar
  88. Tandon HLS, Messick DL (2002) Practical sulphur guide. The Sulphur Institute, Washington, DC, p 20Google Scholar
  89. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325.  https://doi.org/10.1007/978-81-322-2776-2_22 CrossRefGoogle Scholar
  90. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110.  https://doi.org/10.1007/978-81-322-2776-2_7 CrossRefGoogle Scholar
  91. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Ind J Agric Sci 84(8):914–919Google Scholar
  92. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  93. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  94. Vermeij P, Wietek C, Kahnert A, Wüest T, Kertesz MA (1999) Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313. Mol Microbiol 32:913–926.  https://doi.org/10.1046/j.1365-2958.1999.01398.x CrossRefPubMedGoogle Scholar
  95. Vidyalakshmi R, Paranthaman R, Bhakyaraj R (2009) Sulphur oxidizing bacteria and pulse nutrition—a review. World J Agric Sci 5(3):270–l278Google Scholar
  96. Wainwright M (1978) A modified sulphur medium for the isolation of sulphur oxidizing fungi. Plant Soil 49(1):191–193CrossRefGoogle Scholar
  97. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363.  https://doi.org/10.1007/s00572-0050033-6 CrossRefPubMedGoogle Scholar
  98. Wang J, Solomon D, Lehmann J, Zhang X, Amelung W (2006) Soil organic sulphur forms and dynamics in the great plains of North America as influenced by long-term cultivation and climate. Geoderma 133:160–172CrossRefGoogle Scholar
  99. Wyszkowska J, Wieczorek K, Kucharski J (2016) Resistance of arylsulphatase to contamination of soil by heavy metals. Pol J Environ Stud 25(1):365–375CrossRefGoogle Scholar
  100. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201.  https://doi.org/10.1007/978-81-322-2776-2_14 CrossRefGoogle Scholar
  101. Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170.  https://doi.org/10.1007/978-81-322-2776-2_12 CrossRefGoogle Scholar
  102. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42.  https://doi.org/10.1007/978-81-322-2776-2_3 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bholanath Saha
    • 1
  • Sushanta Saha
    • 2
  • Partha Deb Roy
    • 3
  • Dhaneshwar Padhan
    • 2
  • Sajal Pati
    • 2
  • Gora Chand Hazra
    • 2
  1. 1.Dr. Kalam Agricultural College, Bihar Agricultural UniversityKishanganjIndia
  2. 2.Directorate of ResearchBidhan Chandra Krishi ViswavidyalayaKalyani, NadiaIndia
  3. 3.ICAR-NBSS & LUP, RC-JorhatJorhatIndia

Personalised recommendations