Advertisement

Plant Nutrients and Their Roles Under Saline Soil Conditions

  • Hassan El-Ramady
  • Tarek Alshaal
  • Nevien Elhawat
  • Azza Ghazi
  • Tamer Elsakhawy
  • Alaa El-Dein Omara
  • Sahar El-Nahrawy
  • Mohammed Elmahrouk
  • Neama Abdalla
  • Éva Domokos-Szabolcsy
  • Ewald Schnug
Chapter

Abstract

It is well established that the nutrients of plant play a vital role in all plant processes starting from the emergence, development, productivity, and metabolism reaching to the promotion and protection of plants. These plant nutrients could be in general characterized as macronutrients (e.g., Ca, Mg S, N, K, and P) and micronutrients (i.e., Fe, B, Cu, Mn, Cl, Ni, Mo, Co, and Zn) as well as beneficial elements (e.g., Si, Se, Na, and V). These previous mineral nutrients also could protect crop plants against both abiotic and biotic stresses by enhancing the plant resistance power and regulating the mineral nutritional status. Therefore, any plant nutritional problems (like poor soil fertility, imbalance, and deprived delivery of nutrients) definitely will lead to reduce the global production of foods. Thus, it should protect crop production from different stresses through the appropriate agricultural management. Soil salinity was and still one of these plant stresses. A distinguished role of plant nutrients (e.g., N, K, Se, and Si) in ameliorating soil salinity stress has been reported as well as nano-selenium and nano-silica. Several reports have confirmed the great role of these previous plant nutrients under saline soil conditions. Therefore, this review will focus on the role of selenium and silicon in conventional and nano-forms under saline soil conditions. The phytoremediation of these saline soils and the role of plant nutrients will be also highlighted.

Keywords

Plant nutrients Saline soils Abiotic stresses Salinity stress Selenium Silicon Nano-selenium Nano-silica 

Notes

Acknowledgment

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany) (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

References

  1. Ahanger MA, Tittal M, Ahmad Mir R, Agarwal RM (2017) Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma.  https://doi.org/10.1007/s00709-017-1086-z
  2. Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanumly copersicum L.) seedlings under salt stress. Plant Omics J 9:106–114Google Scholar
  3. Alsaeedi A, Alshaal TA, El-Ramady H, Almohsen M (2017a) Enhancing seed germination and seedlings development of common bean (Phaseolus vulgaris) by SiO2 nanoparticles. Egypt J Soil Sci.  https://doi.org/10.21608/EJSS.2017.891.1098
  4. Alsaeedi AH, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Almohsen M (2017b) Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-9847-y
  5. Alshaal T, El-Ramady H, Al-Saeedi AH, Shalaby T, Elsakhawy T, AED O, Gad A, Hamad E, El-Ghamry A, Mosa A, Amer M, Abdalla N (2017) The rhizosphere and plant nutrition under climate change. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, ChamGoogle Scholar
  6. Anjum NA, Gill SS, Tuteja N (2017a) Enhancing cleanup of environmental pollutants. Vol. 1: biological approaches. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-55426-6 CrossRefGoogle Scholar
  7. Anjum NA, Gill SS, Tuteja N (2017b) Enhancing cleanup of environmental pollutants. Non-biological approaches. Springer International Publishing, ChamCrossRefGoogle Scholar
  8. Anjum NA, Gill SS, Tuteja N (2017c) Biological approaches for enhancing the cleanup of environmental pollutants: an introduction. In: Anjum NA et al (eds) Enhancing cleanup of environmental pollutants. Springer International Publishing, ChamGoogle Scholar
  9. Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (2017) Phytoremediation: management of environmental contaminants. Springer International Publishing AG, ChamGoogle Scholar
  10. Arora S, Rao GG (2017) Bio-amelioration of salt-affected soils through halophyte plant species. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, ChamCrossRefGoogle Scholar
  11. Arora S, Singh AK, Singh YP (2017) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, ChamCrossRefGoogle Scholar
  12. Balakhnina TI, Nadezhkina ES (2017) Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russ J Plant Physiol 64:215–223CrossRefGoogle Scholar
  13. Balakhnina TI, Bulak P, Matichenkov VV, Kosobryukhov AA, Włodarczyk TM (2015) The influence of Si-rich mineral zeolite on the growth processes and adaptive potential of barley plants under cadmium stress. Plant Growth Regul 75:557–565CrossRefGoogle Scholar
  14. Bauddh K, Singh B, Korstad J (2017) Phytoremediation potential of bioenergy plants. Springer Nature, SingaporeCrossRefGoogle Scholar
  15. Belal E, El-Ramady H (2016) Nanoparticles in water, soils and agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 2, sustainable agriculture reviews 21. Springer International Publishing, ChamGoogle Scholar
  16. Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Prokisch J, Banfalvi G (2012) Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem 31:2812–2820PubMedCrossRefPubMedCentralGoogle Scholar
  17. Berendse F, van Ruijven J, Jongejans E, Keesstra S (2015) Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881–888CrossRefGoogle Scholar
  18. Bharti P, Singh B, Bauddh K, Dey RK, Korstad J (2017) Efficiency of bioenergy plant in phytoremediation of saline and sodic soil. In: Bauddh K et al (eds) Phytoremediation potential of bioenergy plants. Springer Nature Singapore Pte Ltd, SingaporeGoogle Scholar
  19. Bhattacharjee A, Basu A, Sen T, Biswas J, Bhattacharya S (2017) Nano-Se as a novel candidate in the management of oxidative stress related disorders and cancer. Nucleus 60:137–145CrossRefGoogle Scholar
  20. Borde M, Dudhane M, Kulkarni M (2017) Role of arbuscular mycorrhizal fungi (AMF) in salinity tolerance and growth response in plants under salt stress conditions. In: Varma A et al (eds) Mycorrhiza – eco-physiology, secondary metabolites, nanomaterials. Springer International Publishing AG, ChamGoogle Scholar
  21. Cao F, Fu M, Wang R, Cheng W, Zhang G, Wu F (2017a) Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acid contents, and quality of rice genotypes with contrasting grain Cd accumulation. Funct Integr Genomics 17:387–397PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cao B, Wang L, Gao S, Xia J, Xu K (2017b) Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato. Protoplasma.  https://doi.org/10.1007/s00709-017-1115-y
  23. Chakravarty P, Bauddh K, Kumar M (2017) Phytoremediation: a multidimensional and ecologically viable practice for the cleanup of environmental contaminants. In: Bauddh K et al (eds) Phytoremediation potential of bioenergy plants. Springer Nature, SingaporeGoogle Scholar
  24. Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, sustainable agriculture reviews 20. Springer International Publishing, ChamGoogle Scholar
  25. Choudhary OP (2017) Use of amendments in ameliorating soil and water sodicity. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, ChamGoogle Scholar
  26. Daliakopoulos IN, Tsanis IK, Koutroulis A, Kourgialas NN, Varouchakis AE, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739PubMedCrossRefPubMedCentralGoogle Scholar
  27. Decock C, Lee J, Necpalova M, Pereira EIP, Tendall DM, Six J (2015) Mitigating N2O emissions from soil: from patching leaks to transformative action. Soil 1:687–694CrossRefGoogle Scholar
  28. Dhillon KS, Bañuelos GS (2017) Overview and prospects of selenium phytoremediation approaches. In: Pilon-Smits EAH et al (eds) Selenium in plants, plant ecophysiology 11. Springer International Publishing, ChamGoogle Scholar
  29. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129PubMedCrossRefPubMedCentralGoogle Scholar
  30. Domokos-Szabolcsy E (2011) Biological effect and fortification possibilities of inorganic selenium forms in higher plants. PhD dissertation. Debrecen UniversityGoogle Scholar
  31. Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531CrossRefGoogle Scholar
  32. Domokos-Szabolcsy E, Abdalla N, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20:119–122Google Scholar
  33. Domokos-Szabolcsy É, Alshaal T, Elhawat N, Abdalla N, dos Reis AR, El-Ramady H (2017) The interactions between selenium, nutrients and heavy metals in higher plants under abiotic stresses. Env Biodiv Soil Secur 1:5–31CrossRefGoogle Scholar
  34. dos Reis AR, El-Ramady H, Santos EF, Gratão PL, Schomburg L (2017) Overview of selenium deficiency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In: EAH P-S et al (eds) Selenium in plants, plant ecophysiology 11. Springer International Publishing AG, ChamGoogle Scholar
  35. El-Ramady HR (2014) Integrated nutrient management and postharvest of crops. In: Lichtfouse E (ed) Sustainable agriculture reviews: volume 13, sustainable agriculture reviews 13. Springer International Publishing, ChamGoogle Scholar
  36. El-Ramady HR, Alshaal TA, Shehata SA, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M, Marton L (2014a) Plant nutrition: from liquid medium to micro-farm. In: Ozier-Lafontaine H, Lesueur-Jannoyer M (eds) Sustainable agriculture reviews 14: agroecology and global change, sustainable agriculture reviews 14. Springer International Publishing, ChamGoogle Scholar
  37. El-Ramady HR, Alshaal TA, Amer M, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M (2014b) Soil quality and plant nutrition. In: Ozier-Lafontaine H, Lesueur-Jannoyer M (eds) Sustainable agriculture reviews 14: agroecology and global change, sustainable agriculture reviews 14. Springer International Publishing, ChamGoogle Scholar
  38. El-Ramady HR, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014c) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510CrossRefGoogle Scholar
  39. El-Ramady HR, Abdalla N, Alshaal T, Elhenawy AS, Shams MS, Faizy SEDA, Belal EB, Shehata SA, Ragab MI, Amer MM, Fari M, Sztrik A, Prokisch J, Selmar D, Schnug E, Pilon-Smits EAH, El-Marsafawy SM, Domokos-Szabolcsy E (2015a) Giant reed for selenium phytoremediation under changing climate. Environ Chem Lett 13:359–380CrossRefGoogle Scholar
  40. El-Ramady HR, Abdalla N, Alshaal T, Fári M, Prokisch J, Pilon-Smits EAH, Domokos-Szabolcsy É (2015b) Selenium phytoremediation by giant reed. In: Lichtfouse E et al (eds) Hydrogen production and remediation of carbon and pollutants, environmental chemistry for a sustainable world 6. Springer International Publishing, ChamGoogle Scholar
  41. El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2015c) Selenium and nano-selenium biofortified sprouts using micro-farm system. The 4th International Conference of the International Society for Selenium Research (ISSR) on Selenium in the Environment and Human Health, 18–21 October 2015, Sao Paulo, BrazilCrossRefGoogle Scholar
  42. El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SEDA, Shams MS, Youssef SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fari M, Domokos-Szabolcsy E, Pilon-Smits EA, Selmar D, Haneklaus S, Schnug E (2016) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14:123–147CrossRefGoogle Scholar
  43. El-Ramady H, Alshaal T, Abowaly M, Abdalla N, Taha HS, Al-Saeedi AH, Shalaby T, Amer M, Fári M, Domokos-Szabolcsy É, Sztrik A, Prokisch J, Selmar D, Pilon-Smits EAH, Pilon M (2017) Nanoremediation for sustainable crop production. In: Ranjan S et al (eds) Nanoscience in food and agriculture 5, sustainable agriculture reviews 26. Springer International Publishing, ChamGoogle Scholar
  44. Emadi M, Savasari M, Bahmanyar MA, Biparva P (2016) Application of stabilized zero valent iron nanoparticles for immobilization of lead in three contrasting spiked soils. Res Chem Intermed.  https://doi.org/10.1007/s11164-016-2494-y
  45. Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V et al (eds) Probiotics and plant health. Springer Nature, SingaporeGoogle Scholar
  46. Farooq MA, Saqib ZA, Akhtar J, Bakhat HF, Pasala RK, Dietz KJ (2015) Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon 7:1–5. https://doi.prg/10.1007/s12633-015-9346-z
  47. Forni C, Daiana D, Bernard RG (2017) Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil 410:335–356CrossRefGoogle Scholar
  48. Forootanfara H, Mahboubeh A, Maryam N, Mitra M, Bagher A, Ahmad S (2013) Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol.  https://doi.org/10.1016/j.jtemb.2013.07.005
  49. Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+ /Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387CrossRefGoogle Scholar
  50. Gerhardt KE, MacNeill GJ, Gerwing PD, Greenberg BM (2017) Phytoremediation of salt-impacted soils and use of plant growth-promoting rhizobacteria (PGPR) to enhance phytoremediation. In: Ansari AA et al (eds) Phytoremediation. Springer International Publishing, ChamGoogle Scholar
  51. Gu Y, Cui R, Zhang Z, Xie Z, Pang D (2012) Ultra-small nearinfrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82PubMedCrossRefPubMedCentralGoogle Scholar
  52. Guangming L, Xuechen Z, Xiuping W, Hongbo S, Xiangping W (2017) Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric Ecosyst Environ 237:274–279CrossRefGoogle Scholar
  53. Gupta A, Senthil-Kumar M (2017) Concurrent stresses are perceived as new state of stress by the plants: overview of impact of abiotic and biotic stress combinations. In: Senthil-Kumar M (ed) Plant tolerance to individual and concurrent stresses. Springer, New DelhiGoogle Scholar
  54. Habibi G (2017) Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation. Russ J Plant Physiol 64:368–374CrossRefGoogle Scholar
  55. Haghighi M, Abolghasemi R, Teixeira da Silva JA (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240CrossRefGoogle Scholar
  56. Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143(3):1758–1776PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hasanuzzaman M, Nahar K, Fujita M (2013a) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmed P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87CrossRefGoogle Scholar
  58. Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, Ozturk M (2013b) Enhancing plant productivity under salt stress – relevance of poly-omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: omics, signaling and responses. Springer, Berlin, pp 113–156CrossRefGoogle Scholar
  59. Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014a) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014b) Potential use of halophytes to remediate saline soils. BioMed Resh Int.  https://doi.org/10.1155/2014/589341
  61. Hasanuzzaman M, Nahar K, Rahman A, Al Mahmud J, Hossain MS, Alam MK, Oku H, Fujita M (2017) Actions of biological trace elements in plant abiotic stress tolerance. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, ChamGoogle Scholar
  62. Hnain A, Brooks J, Lefebvre DD (2013) The synthesis of elemental selenium particles by Synechococcus leopoliensis. Appl Microbiol Biotechnol 97:10511–10519PubMedCrossRefPubMedCentralGoogle Scholar
  63. Horie T, Karahara I, Katsuhara M (2012) Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice 5:1–18CrossRefGoogle Scholar
  64. Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210CrossRefGoogle Scholar
  65. Huang YM, Wu QS (2017) Arbuscular mycorrhizal fungi and tolerance of Fe stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature, SingaporeGoogle Scholar
  66. Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, Zhou L, Wang D, Xu P, Cheng M, Wan J (2017) Effects of calcium at toxic concentrations of cadmium in plants. Planta 245:863–873CrossRefPubMedGoogle Scholar
  67. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res 23:13754–13788CrossRefGoogle Scholar
  68. Jampílek J, Kráľová K (2017) Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In: Prasad R et al (eds) Nanotechnology. Springer Nature, SingaporeGoogle Scholar
  69. Kalia VC, Kumar P (2017) Microbial applications vol.1: bioremediation and bioenergy. Springer International Publishing, ChamCrossRefGoogle Scholar
  70. Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63:119–123CrossRefGoogle Scholar
  71. Keesstra S, Geissen V, Mosse K, Piiranen S, Scudiero E, Leistra M, van Schaik L (2012) Soil as a filter for groundwater quality. Curr Opin Environ Sustain 4:507–516CrossRefGoogle Scholar
  72. Khan PSSV, Basha PO (2016) Salt stress and leguminous crops: present status and prospects. In: Azooz MM, Ahmad P (eds) Legumes under environmental stress: yield, improvement and adaptations. Wiley, HobokenGoogle Scholar
  73. Khan MIR, Khan NA (2017) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer Nature, SingaporeCrossRefGoogle Scholar
  74. Khan A, Tan DKY, Afridi MZ, Luo H, Tung SA, Ajab M, Fahad S (2017) Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ Sci Pollut Res 24:14551–14566CrossRefGoogle Scholar
  75. Kim MJ, Radhakrishnan R, Kang SM, You YH, Jeong EJ, Kim JG, Lee IJ (2017) Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinityGoogle Scholar
  76. Kiryushina AP, Voronina LP (2017) Foliar treatment of barley by sodium selenium in controlled conditions. Moscow Univ Soil Sci Bull 72:61–65CrossRefGoogle Scholar
  77. Klotzbucher A, Klotzbucher T, Jahn R, Xuan LD, Cuong LQ, Chien HV, Hinrichs M, Sann C, Vetterlein D (2017) Effects of Si fertilization on Si in soil solution, Si uptake by rice, and resistance of rice to biotic stresses in Southern Vietnam. Paddy Water Environ.  https://doi.org/10.1007/s10333-017-0610-2
  78. Kong L, Yuan Q, Zhu H, Li Y, Guo Q, Wang Q, Bi X, Gao X (2011) The suppression of prostate LNCaP cancer cells growth by selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials 32:6515–6522PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kumar V, Kumar M, Shrivastava N, Bisht S, Sharma S, Varma A (2016) Interaction among rhizospheric microbes, soil, and plant roots: influence on micronutrient uptake and bioavailability. Hakeem KR, Akhtar MS Plant, soil and microbes, Springer International Publishing Cham, 169–185CrossRefGoogle Scholar
  80. Kumar M, Prasad R, Kumar V, Tuteja N, Varma A (2017a) Mycorrhizal fungi under biotic and abiotic stress. In: Varma A et al (eds) Mycorrhiza – eco-physiology, secondary metabolites, nanomaterials. Springer International Publishing, ChamGoogle Scholar
  81. Kumar M, Shamsi TN, Parveen R, Fatima S (2017b) Application of nanotechnology in enhancement of crop productivity and integrated pest management. In: Prasad R et al (eds) Nanotechnology. Springer Nature, SingaporeGoogle Scholar
  82. Kumar P, Sharma V, Atmaram CK, Singh B (2017c) Regulated partitioning of fixed carbon (14C), sodium (Na+), potassium (K+) and glycine betaine determined salinity stress tolerance of gamma irradiated pigeonpea [Cajanus cajan L. Millsp]. Environ Sci Pollut Res 24:7285–7297CrossRefGoogle Scholar
  83. Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64:235–241CrossRefGoogle Scholar
  84. Li P, Zhao CZ, Zhang YQ, Wang XM, Wang JF, Wang F, Bi YR (2017) Silicon enhances the tolerance of Poa annua to cadmium by inhibiting its absorption and oxidative stress. Biol Plant 61:741–750CrossRefGoogle Scholar
  85. Libralato G, Devoti AC, Ghirardini AV, Vignati DAL (2017) Environmental effects of nZVI for land and groundwater remediation. In: Lofrano G et al (eds) Nanotechnologies for environmental remediation. Springer International Publishing, ChamGoogle Scholar
  86. Liu J, Cai H, Mei C, Wang M (2015) Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Front Environ Sci Eng 9:905–911CrossRefGoogle Scholar
  87. Lofrano G, Libralato G, Brown J (2017) Nanotechnologies for environmental remediation: applications and implications. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-53162-5 CrossRefGoogle Scholar
  88. Luo WT, Elser JJ, Lü XT, Wang ZW, Bai E, Yan CF, Wang C, Li MH, Zimmermann NE, Han XG, Xu ZW, Li H, Wu YN, Jiang Y (2015a) Plant nutrients do not covary with soil nutrients under changing climatic conditions. Glob Biogeochem Cycles 29.  https://doi.org/10.1002/2015GB005089
  89. Luo WT, Nelson PN, Li MH, Cai JP, Zhang Y, Yang S, Wang RZ, Han XG, Jiang Y (2015b) Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China. Biogeosciences 12:7047–7056CrossRefGoogle Scholar
  90. Luo W, Sardans J, Dijkstra FA, Peñuelas J, Lü XT, Wu H, Li MH, Bai E, Wang Z, Han X, Jiang Y (2016) Thresholds in decoupled soil-plant elements under changing climatic conditions. Plant Soil 409:159–173CrossRefGoogle Scholar
  91. Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T (2016) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul 35:1–10CrossRefGoogle Scholar
  92. Maathuis FJM, Diatloff E (2013) Roles and functions of plant mineral nutrients. In: Frans Maathuis JM (ed) Plant mineral nutrients: methods and protocols, methods in molecular biology. Springer, New YorkCrossRefGoogle Scholar
  93. Mahdy AM, Elkhatib EA, Balba AM, Ahmed GE (2017) Speciation and fractionation of phosphorus in biosolids-amended soils: effects of water treatment residual nanoparticles. Int J Environ Sci Technol 14:1729–1738CrossRefGoogle Scholar
  94. Mansouri T, Golchin A, Neyestani MR (2017) The effects of hematite nanoparticles on phytoavailability of arsenic and corn growth in contaminated soils. Int J Environ Sci Technol 14:1525–1534CrossRefGoogle Scholar
  95. Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, MNV P (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer Science + Business Media, LLC, New York, pp 1–19Google Scholar
  96. Martínez-Fernández D, Vítková M, Michálková Z, Komárek M (2017) Engineered nanomaterials for phytoremediation of metal/ metalloid-contaminated soils: implications for plant physiology. In: Ansari AA et al (eds) Phytoremediation. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-52381-1_14 CrossRefGoogle Scholar
  97. Mastronardi E, Tsae P, Zhang X, Monreal C, De Rosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Switzerland, p 25.  https://doi.org/10.1007/978-3-319-14024-7_2 CrossRefGoogle Scholar
  98. Mechora Š, Čalasan AŽ, Felicijan M, Krajnc AU, Ambrožič-Dolinšek J (2017) The impact of selenium treatment on some physiological and antioxidant properties of Apium repens. Aquat Bot 138:16–23CrossRefGoogle Scholar
  99. Mehnaz S (2017) Rhizotrophs: plant growth promotion to bioremediation, Microorganisms for Sustainability Series, vol 2. Springer Nature, Singapore.  https://doi.org/10.1007/978-981-10-4862-3 CrossRefGoogle Scholar
  100. Meier S, Curaqueo G, Khan N, Bolan N, Cea M, Eugenia GM, Cornejo P, Ok YS, Borie F (2017) Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J Soils Sediments 17:741–750CrossRefGoogle Scholar
  101. Mishra J, Singh R, Arora NK (2017) Plant growth-promoting microbes: diverse roles in agriculture and environmental sustainability. In: Kumar V et al (eds) Probiotics and plant health. Springer Nature, Singapore.  https://doi.org/10.1007/978-981-10-3473-2_4 CrossRefGoogle Scholar
  102. Mitra GN (2015) Definitions of heavy metals, essential and beneficial plant nutrients. In: Mitra GN (ed) Regulation of nutrient uptake by plants: a biochemical and molecular approach. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-2334-4_8 CrossRefGoogle Scholar
  103. Mitra G (2017) Essential plant nutrients and recent concepts about their uptake. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-58841-4_1 CrossRefGoogle Scholar
  104. Mitra S, Sarkar A, Sen S (2017) Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnol Environ Eng 2:11CrossRefGoogle Scholar
  105. Mohammadi MH, Khataar M, Shekari F (2017) Effect of soil salinity on the wheat and bean root respiration rate at low matric suctions. Paddy Water Environ 15:639–648CrossRefGoogle Scholar
  106. Mosa KA, Ismail A, Helmy M (2017) Plant stress tolerance: an integrated omics approach, Springer Briefs in Systems Biology Series. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-59379-1 CrossRefGoogle Scholar
  107. Mroczek-Zdyrska M, Strubinska J, Hanaka A (2017) Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L. minor plants grown under phosphorus-deficient conditions. J Plant Growth Regul 36:186–199CrossRefGoogle Scholar
  108. Mykhaylenko NF, Zolotareva EK (2017) The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella Vulgaris. Nanoscale Res Lett 12:147PubMedPubMedCentralCrossRefGoogle Scholar
  109. Naeem M, Ansari AA, Gill SS (2017a) Essential plant nutrients: uptake, use efficiency, and management. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-58841-4 CrossRefGoogle Scholar
  110. Naeem M, Ansari AA, Gill SS, Aftab T, Idrees M, Ali A, Khan MMA (2017b) Regulatory role of mineral nutrients in nurturing of medicinal legumes under salt stress. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-58841-4_12 CrossRefGoogle Scholar
  111. Nan J, Chen X, Wang X, Lashari MS, Wang Y, Guo Z, Du Z (2016) Effects of applying flue gas desulfurization gypsum and humic acid on soil physicochemical properties and rapeseed yield of a saline sodic cropland in the eastern coastal area of China. J Soils Sediments 16:38–50CrossRefGoogle Scholar
  112. Nath M, Bhatt D, Prasad R, Tuteja N (2017) Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Varma A et al (eds) Mycorrhiza – eco-physiology, secondary metabolites, nanomaterials. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-57849-1_12 CrossRefGoogle Scholar
  113. Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200PubMedCrossRefPubMedCentralGoogle Scholar
  114. Nedjimi B (2017) Calcium application enhances plant salt tolerance: a review. In: Naeem M et al. (eds) Essential plant nutrients. Springer International Publishing AG. Cham. doi: https://doi.org/10.1007/978-3-319-58841-4_15 CrossRefGoogle Scholar
  115. Negm AM, Eltarabily MGA (2017) Modeling of fertilizer transport through soil, case study: Nile Delta. In: Negm AM (ed) The Nile Delta, vol 55. Hdb Env Chem Springer International Publishing, Cham, pp 121–158CrossRefGoogle Scholar
  116. Nikpay A, Nejadian ES, Goldasteh S, Farazmand H (2017) Efficacy of silicon formulations on sugarcane stalk borers, quality characteristics and parasitism rate on five commercial varieties. Proc Natl Acad Sci India, Sect B Biol Sci 87:289–297CrossRefGoogle Scholar
  117. Osman KT (2013) Plant nutrients and soil fertility management. In: Osman KT (ed) Soils: principles, properties and management. Springer, Dordrecht, pp 129–159CrossRefGoogle Scholar
  118. Ouzounidou G, Giannakoula A, Ilias I, Zamanidis P (2016) Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application. Braz J Bot 39:531–539CrossRefGoogle Scholar
  119. Patra AK, Adhikari T, Bhardwaj AK (2016) Enhancing crop productivity in salt-affected environments by stimulating soil biological processes and remediation using nanotechnology. In: Dagar JC et al (eds) Innovative saline agriculture. Springer India, New Delhi.  https://doi.org/10.1007/978-81-322-2770-0_4 CrossRefGoogle Scholar
  120. Pilon-Smits EAH, Winkel LHE, Lin ZQ (2017) Selenium in plants: molecular, physiological, ecological and evolutionary aspects, Plant Ecophysiology Series, vol 11. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-56249-0 CrossRefGoogle Scholar
  121. Prasad KS, Patel H, Patel T, Patel K, Selvaraj K (2013) Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B: Biointerfaces 103:261–266PubMedCrossRefPubMedCentralGoogle Scholar
  122. Prashanthi M, Sundaram R, Jeyaseelan A, Kaliannan T (2017) Bioremediation and sustainable technologies for cleaner environment, Environmental Science and Engineering Series. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-48439-6 CrossRefGoogle Scholar
  123. Premarathna HL, McLaughlin MJ, Kirby Jason K, Hettiarachchi GM, Beak D, Stacey S, Chittleborough DJ (2010) Potential availability of fertilizer selenium in field capacity and submerged soils. Soil Sci Soc Am J 74:1589–1596.  https://doi.org/10.2136/sssaj2009.0416 CrossRefGoogle Scholar
  124. Purakayastha TJ, Mandal A, Kumari S (2017) Phytoremediation of metal- and salt-affected soils. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-48257-6_11 CrossRefGoogle Scholar
  125. Qadir M, Noble AD, Schubert S, Thomas RJ, Arslan A (2006) Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Dev 17:661–676CrossRefGoogle Scholar
  126. Qados AMA (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Am J Exp Agric 7:78–95CrossRefGoogle Scholar
  127. Rameshraddy PGJ, Reddy BHR, Salimath M, Geetha KN, Shankar AG (2017) Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian J Plant Physiol.  https://doi.org/10.1007/s40502-017-0303-2
  128. Ramezanian BA (2013) Influence of soil amendments and soil properties on macro-and micronutrient availability to microorganisms and plants. Acta Universitatis Agriculturae Sueciae 30:1652–6880Google Scholar
  129. Reynolds RJB, Cappa JJ, Pilon-Smits EAH (2017) Evolutionary aspects of plant selenium accumulation. In: Pilon-Smits EAH et al (eds) Selenium in plants, plant ecophysiology 11. Springer International Publishing, ChamGoogle Scholar
  130. Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431CrossRefGoogle Scholar
  131. Rodrigues FA, Datnoff LE (2015) Silicon and plant diseases. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-22930-0 CrossRefGoogle Scholar
  132. Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Remediation and management of polluted sites. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture, environmental chemistry for a sustainable world. Springer Nature, SingaporeCrossRefGoogle Scholar
  133. Sakhonwasee S, Phingkasan W (2017) Effects of the foliar application of calcium on photosynthesis, reactive oxygen species production, and changes in water relations in tomato seedlings under heat stress. Hortic Environ Biotechnol 58:119–126CrossRefGoogle Scholar
  134. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Abdul Mujeeb M, Shrinivas J, David M, Mundaragi AC, Thimmappa SC, Arakera SB, Prasad R (2017) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R et al (eds) Nanotechnology. Springer Nature, Singapore.  https://doi.org/10.1007/978-981-10-4573-8_5 CrossRefGoogle Scholar
  135. Saratale RG, Saratale GD, Shin HS, Jacob JM, Pugazhendhi A, Bhaisare M, Kumar G (2017) New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-017-9912-6
  136. Sarkar SK (2018a) Trace metals in a tropical mangrove wetland: chemical speciation, ecotoxicological relevance and remedial measures. Springer Nature, Singapore.  https://doi.org/10.1007/978-981-10-2793-2 CrossRefGoogle Scholar
  137. Sarkar SK (2018b) Phytoremediation of trace metals by mangrove plants of Sundarban Wetland. In: Sarkar SK (ed) Trace metals in a tropical mangrove wetland. Springer Nature, Singapore.  https://doi.org/10.1007/978-981-10-2793-2_9 CrossRefGoogle Scholar
  138. Sarwat M, Ahmad A, Abdin MZ, Ibrahim MM (2017) Stress signaling in plants: genomics and proteomics perspective. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-42183-4 CrossRefGoogle Scholar
  139. Sattar A, Cheema MA, Abbas T, Sher A, Ijaz M, Hussain M (2017) Separate and combined effects of silicon and selenium on salt tolerance of wheat plants. Russ J Plant Physiol 64:341–348CrossRefGoogle Scholar
  140. Schiavon M, Lima LW, Jiang Y, Hawkesford MJ (2017) Effects of selenium on plant metabolism and implications for crops and consumers. In: Pilon-Smits EAH et al (eds) Selenium in plants, plant ecophysiology. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-56249-0_15 CrossRefGoogle Scholar
  141. Schomburg L, Arnér ESJ (2017) Selenium metabolism in herbivores and higher trophic levels including mammals. In: Pilon-Smits EAH et al (eds) Selenium in plants, plant ecophysiology. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-56249-0_8 CrossRefGoogle Scholar
  142. Secco D, Whelan J, Rouached H, Lister R (2017) Nutrient stress-induced chromatin changes in plants. Curr Opin Plant Biol 39:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  143. Senthil-Kumar M (2017) Plant tolerance to individual and concurrent stresses. Springer (India), New Delhi.  https://doi.org/10.1007/978-81-322-3706-8 CrossRefGoogle Scholar
  144. Shahid SA, Abdelfattah MA, Taha FK (2013) Developments in soil salinity assessment and reclamation innovative thinking and use of marginal soil and water resources in irrigated agriculture. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-5684-7 CrossRefGoogle Scholar
  145. Shahzadi I, Iqbal M, Rasheed R, Ashraf MA, Perveen S, Hussain M (2017) Foliar application of selenium increases fertility and grain yield in bread wheat under contrasting water availability regimes. Acta Physiol Plant 39:173CrossRefGoogle Scholar
  146. Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, Shehata S, Amer M, Domokos-Szabolcsy É, El-Ramady H (2016) Nanoparticles, soils, plants and sustainable agriculture. In: Ranjan S et al (eds) Nanoscience in food and agriculture 1, Sustainable Agriculture Reviews. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-39303-2_10 CrossRefGoogle Scholar
  147. Sharma DK, Singh A (2017) Current trends and emerging challenges in sustainable management of salt-affected soils: a critical appraisal. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-48257-6_1 CrossRefGoogle Scholar
  148. Shivakumar S, Bhaktavatchalu S (2017) Role of plant growth-promoting rhizobacteria (PGPR) in the improvement of vegetable crop production under stress conditions. In: Zaidi A, Khan MS (eds) Microbial strategies for vegetable production. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-54401-4_4 CrossRefGoogle Scholar
  149. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131PubMedPubMedCentralCrossRefGoogle Scholar
  150. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.) Saudi J Biol Sci 21:13–17PubMedCrossRefPubMedCentralGoogle Scholar
  151. Singh RP (2017) Application of nanomaterials toward development of nanobiosensors and their utility in agriculture. In: Prasad R et al (eds) Nanotechnology. Springer Nature, Singapore.  https://doi.org/10.1007/978-981-10-4573-8_14 CrossRefGoogle Scholar
  152. Singh RP, Jha PN (2017) Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat. Symbiosis.  https://doi.org/10.1007/s13199-017-0477-4
  153. Singh YP, Mishra VK, Sharma DK, Singh G, Arora S, Dixit H, Cerda A (2016) Harnessing productivity potential and rehabilitation of degraded sodic lands through Jatropha based intercropping systems. Agric Ecosyst Environ 233:121–129CrossRefGoogle Scholar
  154. Singh SR, Joshi D, Tripathi N, Singh P, Srivastava TK (2017) Plant growth-promoting bacteria: an emerging tool for sustainable crop production under salt stress. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-48257-6_6 CrossRefGoogle Scholar
  155. Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, McDowell R, Griffiths RI, Asakawa S, Bustamante M, House JI, Sobocká J, Harper R, Pan G, West PC, Gerber JS, Clark JM, Adhya T, Scholes RJ, Scholes MC (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 1:665–685CrossRefGoogle Scholar
  156. Soundararajan P, Manivannan A, Ko CH, Jeong BR (2017) Silicon enhanced redox homeostasis and protein expression to mitigate the salinity stress in Rosa hybrida ‘Rock Fire’. J Plant Growth Regul.  https://doi.org/10.1007/s00344-017-9705-7
  157. Srivastava N (2017) Remediation of polluted soils using hyperaccumulator plants. In: Anjum NA et al (eds) Enhancing cleanup of environmental pollutants. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-55426-6_9 CrossRefGoogle Scholar
  158. Srivastava N, Mukhopadhyay M (2013) Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol.  https://doi.org/10.1016/j.powtec.2013.03.050 CrossRefGoogle Scholar
  159. Srivastava N, Mukhopadhyay M (2015) Biosynthesis and structural characterization of selenium nanoparticles using Gliocladium roseum. J Clust Sci.  https://doi.org/10.1007/s10876-014-0833-y
  160. Srivastava AK, Dev A, Karmakar S (2017) Nanosensors for food and agriculture. In: Ranjan S et al. (eds) Nanoscience in food and agriculture, vol 5, Sustainable Agriculture Reviews. Springer International Publishing AG. Cham, doi:  https://doi.org/10.1007/978-3-319-58496-6_3 CrossRefGoogle Scholar
  161. Subramanian KS, Thirunavukkarasu M (2017) Nano-fertilizers and nutrient transformations in soil. In: Ghorbanpour M et al. (eds) Nanoscience and plant–soil systems, soil biology. Springer International Publishing AG, Cham. doi: https://doi.org/10.1007/978-3-319-46835-8_11 CrossRefGoogle Scholar
  162. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-14024-7_3 CrossRefGoogle Scholar
  163. Sunkar R (2017) Plant stress tolerance: methods and protocols, Methods in Molecular Biology Series Vol. 1631. Springer, New York.  https://doi.org/10.1007/978-1-4939-7136-7 CrossRefGoogle Scholar
  164. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1294CrossRefGoogle Scholar
  165. Swain R, Rout GR (2017) Silicon in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews, sustainable agriculture reviews. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-58679-3_8 CrossRefGoogle Scholar
  166. Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Sun Z, Zhou L, Zeng X (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea L. Gaud.) under cadmium stress. Environ Sci Pollut Res 22:9999–10008CrossRefGoogle Scholar
  167. Tei F, Nicola S, Benincasa P (2017) Advances in research on fertilization management of vegetable crops, Advances in Olericulture Series. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-53626-2 CrossRefGoogle Scholar
  168. Tripathi DK, Singh VP, Gangwar S, Prasad SM, Maurya JN, Chauhan DK (2014) Role of silicon in enrichment of plant nutrients and protection from biotic and abiotic stresses. In: Ahmad P et al (eds) Improvement of crops in the era of climatic changes. Springer, New YorkGoogle Scholar
  169. Turan M, Yildirim E, Kitir N, Unek C, Nikerel E, Ozdemir BS, Güneş A, Mokhtari NEP (2017) Beneficial role of plant growth promoting bacteria in vegetable production under abiotic stress. In: Zaidi A, Khan MS (eds) Microbial strategies for vegetable production. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-54401-4_7 CrossRefGoogle Scholar
  170. Ul Hassan Z, Ali S, Rizwan M, Hussain A, Akbar Z, Rasool N, Abbas F (2017) Role of zinc in alleviating heavy metal stress. In: Naeem M et al (eds) Essential plant nutrients. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-58841-4_14 CrossRefGoogle Scholar
  171. Upadhyaya H, Dutta BK, Panda SK (2017) Impact of zinc on dehydration and rehydration responses in tea. Biol Plant (in press)Google Scholar
  172. USGS (2017) Mineral commodity summaries. U.S. Geological Survey, p 202. doi: https://doi.org/10.3133/70180197
  173. Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5CrossRefGoogle Scholar
  174. Wang Q, Webster TJ (2012) Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res 100:3205–3210CrossRefGoogle Scholar
  175. Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845CrossRefGoogle Scholar
  176. Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227:228CrossRefGoogle Scholar
  177. Wu QS (2017) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature Singapore Pte Ltd, Singapore.  https://doi.org/10.1007/978-981-10-4115-0 CrossRefGoogle Scholar
  178. Xu L, Islam F, Ali B, Pei Z, Li J, Ghani MA, Zhou W (2017) Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.). 3. Biotech 7:273Google Scholar
  179. Yadav R, Juneja S, Singh P, Kumar S (2017a) Drought and heat tolerance in chickpea: transcriptome and morphophysiological changes under individual and combined stress. In: Senthil-Kumar M (ed) Plant tolerance to individual and concurrent stresses. Springer, New Delhi.  https://doi.org/10.1007/978-81-322-3706-8_7 CrossRefGoogle Scholar
  180. Yadav RS, Mahatma MK, Thirumalaisamy PP, Meena HN, Bhaduri D, Arora S, Panwar J (2017b) Arbuscular mycorrhizal fungi (AMF) for sustainable soil and plant health in salt-affected soils. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham.  https://doi.org/10.1007/978-3-319-48257-6_7 CrossRefGoogle Scholar
  181. Zhang J, Wang X, Xu T (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with Se-methylselenocysteine in mice. Toxicol Sci 101:22–31PubMedCrossRefPubMedCentralGoogle Scholar
  182. Zhang T, Zhan X, Kang Y, Wan S, Feng H (2017a) Improvements of soil salt characteristics and nutrient status in an impermeable saline–sodic soil reclaimed with an improved drip irrigation while ridge planting Lycium barbarum L. J Soils Sediments 17:1126–1139CrossRefGoogle Scholar
  183. Zhang W, Xie Z, Wang L, Li M, Lang D, Zhang X (2017b) Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment. J Plant Res 130:611–624PubMedCrossRefPubMedCentralGoogle Scholar
  184. Zhang Y, Wang Y, Ding Z, Wang H, Song L, Jia S, Ma D (2017c) Zinc stress affects ionome and metabolome in tea plants. Plant Physiol Biochem.  https://doi.org/10.1016/j.plaphy.2016.12.014
  185. Zhu X, Song F, Liu F (2017) Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature, Singapore.  https://doi.org/10.1007/978-981-10-4115-0_8 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hassan El-Ramady
    • 1
  • Tarek Alshaal
    • 1
  • Nevien Elhawat
    • 2
  • Azza Ghazi
    • 3
  • Tamer Elsakhawy
    • 3
  • Alaa El-Dein Omara
    • 3
  • Sahar El-Nahrawy
    • 3
  • Mohammed Elmahrouk
    • 4
  • Neama Abdalla
    • 5
  • Éva Domokos-Szabolcsy
    • 6
  • Ewald Schnug
    • 7
  1. 1.Soil and Water Department, Faculty of AgricultureKafrelsheikh UniversityKafr El-SheikhEgypt
  2. 2.Biological and Environmental Science Department, Faculty of Home EconomicsAl-Azhar UniversityCairoEgypt
  3. 3.Agriculture Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Sakha Agricultural Research StationAgriculture Research Center (ARC)GizaEgypt
  4. 4.Horticulture Department, Faculty of AgricultureKafrelsheikh UniversityKafr El-SheikhEgypt
  5. 5.Plant Biotechnology Department, Genetic Engineering DivisionNational Research CenterGizaEgypt
  6. 6.Agricultural Botany, Plant Physiology and Plant Biotechnology DepartmentDebrecen UniversityDebrecenHungary
  7. 7.Institute of Crop and Soil Science (JKI)Federal Research Centre for Cultivated PlantsBraunschweigGermany

Personalised recommendations