Advertisement

The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms

  • Mirza Hasanuzzaman
  • Md. Shahadat Hossain
  • M. H. M. Borhannuddin Bhuyan
  • Jubayer Al Mahmud
  • Kamrun Nahar
  • Masayuki Fujita
Chapter

Abstract

Sulfur (S) is an essential macronutrient in plants that serves numerous plant functions and is vital for the metabolic processes. Moreover, it is the constituent of some essential amino acids and metabolites. Recent studies have provided the notion that S not only improves the productivity of plants under normal condition but also protects them from abiotic stresses like salinity, drought, and toxic metals/metalloids. Different S compounds directly act as antioxidants or modulate antioxidant defense system. Among them, glutathione (GSH) is regarded as one of the powerful antioxidants and stress protectors. Interactions of S with other biological molecules afford stress signaling to provide defense against environmental stresses. However, the S uptake, translocation, and mechanisms of action in plants under stressful conditions are still under research. The recent progress on the roles of S in conferring abiotic stresses and related literature is presented in this chapter.

Keywords

Abiotic stress Antioxidants Cysteine Glutathione Plant nutrients Sulfate transporters 

Abbreviations

ABA

Abscisic acid

ACS

1-Aminocyclopropane carboxylic acid (ACC) synthase (ACS)

APK

APS kinase

APR

Adenosine-5′-phosphosulfate reductase

APS

Adenosine-5′-phosphosulfate

APX

Ascorbate peroxidase

AsA

Ascorbate

ATP

Adenosine triphosphate

ATPS

ATP sulfurylase

CAT

Catalase

CBL

Cystathionine β-lyase

CGS

Cystathionine γ-synthase

CSC

Cysteine synthase complex

Cys

Cysteine

Cyst

Cystathionine

DHA

Dehydroascorbate

DHAR

Dehydroascorbate reductase

EF-TU

Elongation factor-thermo unstable

GAPDH

Glyceraldehyde-3-P-dehydrogenase

GB

Glycine betaine

GCL

Glutamate-cysteine ligase

Gly I

Glyoxalase I

Gly II

Glyoxalase II

GPX

Glutathione peroxidase

GR

Glutathione reductase

GRX

Glutaredoxins

GSH

Glutathione

GSHS

Glutathione synthetase

GSSG

Oxidized glutathione

GST

Glutathione S-transferase

h-GSH

Homo-GSH

JA

Jasmonates

LOX

Lipoxygenase

MDA

Malondialdehyde

MDHAR

Monodehydroascorbate reductase

Met

Methionine

MG

Methylglyoxal

MRNA

Messenger ribonucleic acid

MS

Methionine synthase

NaHS

Sodium hydrosulfide

NPT

Nonprotein thiol

OAS

O-Acetylserine

OASS

O-Acetylserine sulfhydrylase

OAS-TL

OAS(thiol)lyase

OPH

O-Phosphohomoserine

PAPS

3-Phosphoadenosine-5-phosphosulfate

PCs

Phytochelatins

PEG

Polyethylene glycol

POD

Peroxidase

POX

Peroxidases

ROS

Reactive oxygen species

RT-PCR

Reverse transcription polymerase chain reaction

RuBisCO

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SAT

Serine acetyltransferase

Ser

Serine

SiR

Sulfite reductase

SLG

S-d-Lactoylglutathione

SOD

Superoxide dismutase

SULTR

Proton/SO42−cotransporter in plants

SURE

Sulfur-responsive element

TBARS

Thiobarbituric acid reactive substances

TRX

Thioredoxins

γ-ECS

γ-Glutamylcysteine synthetase

γ-GluCys

γ-Glutamylcysteine

Notes

Acknowledgments

The authors acknowledge Khursheda Parvin and Sayed Mohammad Mohsin, Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Japan, for critic reading and formatting of the manuscript.

References

  1. Abdallah M, Dubousse L, Meuriot F, Etienne P, Avice JC, Ourry A (2010) Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J Exp Bot 61:2635–2646PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abdin MZ, Ahmad A, Khan N, Khan I, Jamal A, Iqbal M (2003) Sulphur interaction with other nutrients. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Springer, Dordrecht, pp 359–374CrossRefGoogle Scholar
  3. Ahmad N, Malagoli M, Wirtz M, Hell R (2016) Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol 16:247.  https://doi.org/10.1186/s12870-016-0940-z CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249CrossRefPubMedGoogle Scholar
  5. Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci 6:210.  https://doi.org/10.3389/fpls.2015.00210 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Asgher M, Khan NA, Khan MIR, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61PubMedCrossRefPubMedCentralGoogle Scholar
  7. Asgher M, Per TS, Anjum S, Khan MIR, Masood A, Verma S, Khan NA (2017) Contribution of glutathione in heavy metal stress tolerance in plants. In: Khan M, Khan N (eds) Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Springer, Singapore, pp 297–313CrossRefGoogle Scholar
  8. Astolfi S, Zuchi S (2013) Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiol Plant 35:175–181CrossRefGoogle Scholar
  9. Bashir H, Ahmad J, Bagheri R, Nauman M, Qureshi MI (2012) Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. Environ Exp Bot 4:19–32Google Scholar
  10. Bashir H, Ibrahim MM, Bagheri R, Ahmad J, Arif IA, Baig MA, Qureshi MI (2015) Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AOB Plants 7:1–13CrossRefGoogle Scholar
  11. Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MG, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175CrossRefPubMedGoogle Scholar
  12. Bottcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buchner P, Stuiver CE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, Kok LJD (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cabreiro F, Picot CR, Friguet B, Petropoulos I (2006) Methionine sulfoxide reductases. Ann N Y Acad Sci 1067:37–44CrossRefPubMedGoogle Scholar
  15. Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 41:72–78PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013) SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M, Xiang CB (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615PubMedCrossRefPubMedCentralGoogle Scholar
  18. Capaldi FR, Gratão PL, Reis AR, Lima LW, Azevedo RA (2015) Sulfur metabolism and stress defense responses in plants. Tropl Plant Biol 8:60–73CrossRefGoogle Scholar
  19. Carciochi WD, Divito GA, Fernández LA, Echeverría HE (2017) Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J Plant Nutr 40:1231–1242CrossRefGoogle Scholar
  20. Çevik S, Ünyayar S (2015) The effects of exogenous application of ascorbate and glutathione on antioxidant system in cultivated Cicer arietinum and wild type C. reticulatum under drought stress. J Nat Appl Sci 19:91–97Google Scholar
  21. Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen J, Wang WH, Wu FH, You CY, Liu WT, Dong XJ, He JX, Zheng HL (2013) Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant Soil 362:301–318CrossRefGoogle Scholar
  23. Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL (2015) Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Sci Rep 5:12516.  https://doi.org/10.1038/srep12516 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chen J, Shang YT, Wang WH, Chen XY, He EM, Zheng HL, Shangguan Z (2016) Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front Plant Sci 7:1173.  https://doi.org/10.3389/fpls.2016.01173 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chen Z, Chen M, Jiang M (2017) Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol Biochem 111:179–192PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP (2015) Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J 83:926–939PubMedCrossRefPubMedCentralGoogle Scholar
  27. Christou A, Manganaris GA, Papadopoulos I, Fotopouls V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64:1953–1966PubMedPubMedCentralCrossRefGoogle Scholar
  28. Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. J Plant Growth Regul 62:241–255CrossRefGoogle Scholar
  29. Cui W, Chen H, Zhu K, Jin Q, Xie Y, Cui J, Xia Y, Zheng J, Shen W (2014) Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostases. PLoS One 9:e109669.  https://doi.org/10.1371/journal.pone.0109669 CrossRefPubMedPubMedCentralGoogle Scholar
  30. D’Hooghe P, Escamez S, Trouverie J, Avice JC (2013) Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms. BMC Plant Biol 13:23.  https://doi.org/10.1186/1471-2229-13-23 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Daud MK, Mei L, Azizullah A, Dawood M, Ali I, Mahmood Q, Ullah W, Jamil M, Zhu SJ (2016) Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-016-6739-5
  32. Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation the same or not the same? Mol Plant 3:314–325PubMedCrossRefPubMedCentralGoogle Scholar
  33. Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79:391–399CrossRefGoogle Scholar
  34. Ding X, Jiang Y, He L, Zhou Q, Yu J, Hui D, Huang D (2016) Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings. Sci Rep 6:35424.  https://doi.org/10.1038/srep35424 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S, Suman S, Adhikari B, Shukla Y, Trivedi PK, Pandey V, Tripathi RD (2015a) Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 5:16205.  https://doi.org/10.1038/srep16205 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015b) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dos Santos CV, Cuiné S, Rouhier N, Rey P (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909–922PubMedCentralCrossRefGoogle Scholar
  38. Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyl transferase and O-acetylserine (thiol) lyase in higher plants – structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245PubMedCrossRefPubMedCentralGoogle Scholar
  39. Du X, Jin Z, Liu D, Yang G, Pei Y (2017) Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiol Biochem 120:112–119PubMedCrossRefPubMedCentralGoogle Scholar
  40. Egesel CO, Gul MK, Kahriman F (2009) Changes in yield and seed quality traits in rapeseed genotypes by sulphur fertilization. Eur Food Res Technol 229:505–513CrossRefGoogle Scholar
  41. Erdala S, Turk H (2016) Cysteine-induced upregulation of nitrogen metabolism-related genes and enzyme activities enhance tolerance of maize seedlings to cadmium stress. Environ Exp Bot 132:92–99CrossRefGoogle Scholar
  42. Fang T, Cao Z, Li J, Shen W, Huang L (2014) Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiol Biochem 76:44–51PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T (2012) The proteome response of Hordeum spontaneum to salinity stress. Cereal Res Commun 39:6387–6397Google Scholar
  44. Fatma M, Asgher M, Masood A, Khan NA (2014) Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 107:55–63CrossRefGoogle Scholar
  45. Fu J, Liu CP, Zhang ZW, Xing MW, Xu SW (2013) Influence of inflammatory pathway markers on oxidative stress induced by cold stress in intestine of quails. Res Vet Sci 95:495–501PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gallardo K, Courty PE, Le Signor C, Wipf D, Vernoud V (2014) Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions. Front Plant Sci 5:580.  https://doi.org/10.3389/fpls.2014.00580 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Genisel M, Erdal S, Kizilkaya M (2014) The mitigating effect of cysteine on growth inhibition in salt-stressed barley seeds is related to its own reducing capacity rather than its effects on antioxidant system. Plant Growth Regul 75:187–197CrossRefGoogle Scholar
  48. Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442.  https://doi.org/10.3389/fpls.2014.00442 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gilabel AP, Nogueirol RC, Garbo AI, Monteiro FA (2014) The role of sulfur in increasing guinea grass tolerance of copper phytotoxicity. Water Air Soil Pollut 225:1806.  https://doi.org/10.1007/s11270-013-1806-8 CrossRefGoogle Scholar
  50. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedPubMedCentralCrossRefGoogle Scholar
  51. Haag AF, Kerscher B, Dall’Angelo S, Sani M, Longhi R, Baloban M, Wilson HM, Mergaert P, Zanda M, Ferguson GP (2012) Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. J Biol Chem 287:10791–10798PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee? Plant Physiol Biochem 78:37–42PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316CrossRefGoogle Scholar
  54. Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061.  https://doi.org/10.3389/fpls.2017.01061 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017a) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200.  https://doi.org/10.3390/ijms18010200 CrossRefPubMedCentralGoogle Scholar
  56. Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017b) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23:249–268PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hashem A, Abd Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23:272–281PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hawkesford MJ (2012) Sulfate uptake and assimilation–whole plant regulation. In: De Kok LJ, Tausz M, Hawkesford MJ, Hoefgen R, McManus MT, Norton R, Rennenberg H, Saito K, Schnug E, Tabe L (eds) Sulfur metabolism in plants. Springer, Dordrecht, pp 11–24CrossRefGoogle Scholar
  59. Hirani AH, Li G, Zelmer CD, McVetty PBE, Asif M, Goyal A (2012) Molecular genetics of glucosinolate biosynthesis in brassicas: genetic manipulation and application aspects. In: Goyal A (ed) Crop plant. InTech, Rijeka, pp 189–216Google Scholar
  60. Hopkins L, Parmar S, Blaszczyk A, Hesse H, Hoefgen R, Hawkesford MJ (2005) O-Acetylserine and the regulation of expression of genes encoding components for sulfate uptake and assimilation in potato. Plant Physiol 138:433–440PubMedPubMedCentralCrossRefGoogle Scholar
  61. Howarth JR, Fourcroy P, Davidian JC, Smith FW, Hawkesford MJ (2003) Cloning of two contrasting high-affinity sulphate transporters from tomato induced by low sulphate and infection by the vascular pathogen Verticillium dahlia. Planta 218:58–64PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hu KD, Bai GS, Li WJ, Yan H, Hu LY, Li YH, Zhang H (2014) Sulfur dioxide promotes germination and plays an antioxidant role in cadmium-stressed wheat seeds. J Plant Growth Regul 75:271–280CrossRefGoogle Scholar
  63. Iqbal N, Nazar R, Syeed S, Masood A, Khan NA (2011) Exogenously- sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J Exp Bot 62:4955–4963PubMedPubMedCentralCrossRefGoogle Scholar
  64. Iqbal N, Khan NA, Nazar R, da Silva JAT (2012) Ethylene-stimulated photosynthesis results from increased nitrogen and sulfur assimilation in mustard types that differ in photosynthetic capacity. Environ Exp Bot 78:84–90CrossRefGoogle Scholar
  65. Jankowski K, Budzyński W, Szymanowski A (2008) Effect of sulphur on the quality of winter rape seeds. J Entomol 13:521–534Google Scholar
  66. Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414:481–486PubMedCrossRefPubMedCentralGoogle Scholar
  67. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kasajima I, Ohkama-Ohtsu N, Ide Y, Hayashi H, Yoneyama T, Suzuki Y, Naito S, Fujiwara T (2007) The BIG gene is involved in regulation of sulfur deficiency-responsive genes in Arabidopsis thaliana. Physiol Plant 129:351–363CrossRefGoogle Scholar
  69. Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004a) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004b) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321CrossRefPubMedGoogle Scholar
  72. Khan MIR, Asgher M, Iqbal N, Khan NA (2013) Potentiality of Sulphur-containing compounds in salt stress tolerance. In: Ahmad P, Azooz M, Prasad M (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 443–472CrossRefGoogle Scholar
  73. Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S (2014) Salinity tolerance in plants: revisiting the role of sulfur metabolites. J Plant Biochem Physiol 2:120.  https://doi.org/10.4172/2329-9029.1000120 CrossRefGoogle Scholar
  74. Khan MIR, Iqbal N, Masood A, Mobin M, Anjum NA, Khan NA (2016) Modulation and significance of nitrogen and sulfur metabolism in cadmium challenged plants. Plant Growth Regul 78:1–11CrossRefGoogle Scholar
  75. Koprivova A, Kopriva S (2008) Lessons from investigation of regulation of APS reductase by salt stress. Plant Signal Behav 3:567–569PubMedPubMedCentralCrossRefGoogle Scholar
  76. Koprivova A, Kopriva S (2014) Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. Front Plant Sci 5:589.  https://doi.org/10.3389/fpls.2014.00589 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kumar B, Singla-Pareek SL, Sopory SK (2010) Glutathione homeostasis: crucial for abiotic stress tolerance in plants. In: Pareek A, Sopory SK, Bohnert JH, Govindjee (eds) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, New York, pp 263–282Google Scholar
  78. Lancilli C, Giacomini B, Lucchini G, Davidian JC, Cocucci M, Sacchi GA, Nocito FF (2014) Cadmium exposure and sulfate limitation reveal differences in the transcriptional control of three sulfate transporter (Sultr1;2) genes in Brassica juncea. BMC Plant Biol 14:132.  https://doi.org/10.1186/1471-2229-14-132 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Lee BR, Koprivova A, Kopriva S (2011) The key enzyme of sulfate assimilation, adenosine 5′-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. Plant J 67:1042–1054PubMedCrossRefPubMedCentralGoogle Scholar
  80. Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105:8197–8202PubMedPubMedCentralCrossRefGoogle Scholar
  81. Li ZG (2013) Hydrogen sulfide: a multifunctional gaseous molecule in plants. Russ J Plant Physiol 60:733.  https://doi.org/10.1134/S1021443713060058 CrossRefGoogle Scholar
  82. Li ZG (2015) Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal Behav 10:e1051278.  https://doi.org/10.1080/15592324.2015.1051278 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Li ZG, He QQ (2015) Hydrogen peroxide might be a downstream signal molecule of hydrogen sulfide in seed germination of mung bean (Vigna radiata). Biologia 70:753–759Google Scholar
  84. Li ZG, Ding XJ, Du PF (2013a) Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol 170:741–747PubMedCrossRefPubMedCentralGoogle Scholar
  85. Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ (2013b) Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ 36:1564–1572PubMedCrossRefPubMedCentralGoogle Scholar
  86. Li ZG, Long WB, Yang SZ, Wang YC, Tang JH, Chen T (2015) Involvement of sulfhydryl compounds and antioxidant enzymes in H2S-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension-cultured cells. In Vitro Cell Dev Biol-Plant 51:428–437CrossRefGoogle Scholar
  87. Li ZG, Min X, Zhou ZH (2016) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621.  https://doi.org/10.3389/fpls.2016.01621 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Liang T, Ding H, Wang G, Kang J, Pang H, Lv J (2016) Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L. Ecotoxicol Environ Saf 124:129–137PubMedCrossRefPubMedCentralGoogle Scholar
  89. Liu X, Yang Y, Deng X, Li M, Zhang W, Zhao Z (2017) Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate. Environ Exp Bot 135:13–20CrossRefGoogle Scholar
  90. Lou L, Kang J, Pang H, Li Q, Du X, Wu W, Chen J, Lv J (2017) Sulfur protects pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism. Int J Mol Sci 18:1628.  https://doi.org/10.3390/ijms18081628 CrossRefPubMedCentralGoogle Scholar
  91. Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective path ways. Physiol Plant 134:508–521PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, Lu H, Xie Y, Guo T (2016) Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One 11:e0163082PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (2010) Ascorbate and glutathione: protectors of plants in oxidative stress. In: Mahmood Q, Ahmad R, Kwak SS, Rashid A, Anjum NA (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Berlin, pp 209–229CrossRefGoogle Scholar
  94. Mária V, Ladislav D, Pavel R (2017) Sulphur nutrition and its effect on yield and oil content of oilseed rape (Brassica Napus L.) Acta Univ Agric Et Silvic Mendel Brun 65:555–562CrossRefGoogle Scholar
  95. Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004a) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation/dephosphorylation circuit for transcriptional regulation. Plant Cell Physiol 45:340–345PubMedCrossRefPubMedCentralGoogle Scholar
  97. Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004b) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789PubMedCrossRefPubMedCentralGoogle Scholar
  98. Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314PubMedCrossRefPubMedCentralGoogle Scholar
  99. Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mazid M, Khan ZH, Quddusi S, Taqi AK, Firoz M (2011) Significance of Sulphur nutrition against metal induced oxidative stress in plants. J Stress Physiol Biochem 7:165–184Google Scholar
  101. Min Y, Ping QB, Xue-li M, Ping W, Mei-ling L, Lu-lu C, Lei-tai C, Ai-qing S, Zhen-lin W, Yan-ping Y (2016) Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.) J Integr Agric 15:2745–2758CrossRefGoogle Scholar
  102. Mobin M, Khan MN, Abbas ZK, Ansari HR, Al-Mutairi KA (2016) Significance of sulfur in heat stressed cluster bean (Cymopsis tetragonoloba L. Taub) genotypes: responses of growth, sugar and antioxidative metabolism. Arch Agron Soil Sci 63:288–295CrossRefGoogle Scholar
  103. Mukhtar I, Shahid MA, Khan MW, Balal RM, Iqbal MM, Naz T, Zubair M, Ali HH (2016) Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil Environ 35:56–64Google Scholar
  104. Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015a) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants 7. doi: https://doi.org/10.1093/aobpla/plv069 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015b) Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ Exp Bot 112:44–54CrossRefGoogle Scholar
  106. Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015c) Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol Plant 59:745–756CrossRefGoogle Scholar
  107. Nahar K, Hasanuzzaman M, Fujita M (2016) Physiological roles of glutathione in conferring abiotic stress tolerance to plants. In: Gill SS, Tuteja N (eds) Abiotic stress response in plants. Wiley, Weinheim, pp 151–179Google Scholar
  108. Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87CrossRefGoogle Scholar
  109. Nishida S, Duan G, Ohkama-Ohtsu N, Uraguchi S, Fujiwara T (2016) Enhanced arsenic sensitivity with excess phytochelatin accumulation in shoots of a SULTR1; 2 knockout mutant of Arabidopsis thaliana (L.) Heynh. Soil Sci Plant Nutr 62:367–372CrossRefGoogle Scholar
  110. Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nocito FF, Lancilli C, Giacomini B, Sacchi GA (2007) Sulphur metabolism and cadmium stress in higher plants. Plant Stress 1:142–156Google Scholar
  112. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484PubMedCrossRefPubMedCentralGoogle Scholar
  113. Nuruzzaman M, Sharoni AM, Satoh K, Al-Shammari T, Shimizu T, Sasaya T, Omura T, Kikuchi S (2012) The thioredoxin gene family in rice: genome-wide identification and expression profiling under different biotic and abiotic treatments. Biochem Biophys Res Commun 423:417–423PubMedCrossRefPubMedCentralGoogle Scholar
  114. Osman AS, Rady MM (2012) Ameliorative effects of sulphur and humic acid on the growth, anti-oxidant levels, and yields of and pea (Pisum sativum L.) plants grown in reclaimed saline soil. J Hortic Sci Biotechnol 87:626–632CrossRefGoogle Scholar
  115. Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509PubMedCrossRefPubMedCentralGoogle Scholar
  116. Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 411:319–332CrossRefGoogle Scholar
  117. Riemenschneider A, Wegele R, Schmidt A, Papenbrock J (2005) Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J 272:1291–1304PubMedCrossRefPubMedCentralGoogle Scholar
  118. Rochaix JD (2011) Assembly of the photosynthetic apparatus. Plant Physiol 155:1493–1500PubMedPubMedCentralCrossRefGoogle Scholar
  119. Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7:264–276CrossRefPubMedGoogle Scholar
  120. Salvagiotti F, Castellarín JM, Pedrol HM (2009) Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Res 113:170–177CrossRefGoogle Scholar
  121. Scherer HW (2008) Impact of sulphur on N2 fixation of legumes. In: Khan NA, Singh S, Umar S (eds) Sulphur assimilation and abiotic stresses in plants. Springer-Verlag, New York, pp 43–54CrossRefGoogle Scholar
  122. Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Bot 57:711–726CrossRefGoogle Scholar
  123. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037.  https://doi.org/10.1155/2012/217037 CrossRefGoogle Scholar
  124. Shen J, Xing T, Yuan H, Liu Z, Jin Z, Zhang L, Pie Y (2013) Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by MicroRNA expressions. PLoS One 8:e77047.  https://doi.org/10.1371/journal.pone.0077047 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sheng H, Zeng J, Liu Y, Wang X, Wang Y, Kang H, Fan X, Sha L, Zhang H, Zhou Y (2016) Sulfur mediated alleviation of Mn toxicity in polish wheat relates to regulating Mn allocation and improving antioxidant system. Front Plant Sci 7:1382.  https://doi.org/10.3389/fpls.2016.01382 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Shi H, Ye T, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.) Plant Physiol Biochem 74:99–107PubMedCrossRefPubMedCentralGoogle Scholar
  127. Shi H, Ye T, Han N, Bian H, Liu X, Chan Z (2015) Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. J Integr Plant Biol 57:628–640PubMedCrossRefPubMedCentralGoogle Scholar
  128. Shibagaki N, Rose A, Mcdermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify SULTR1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486PubMedCrossRefPubMedCentralGoogle Scholar
  129. Siddiqui MH, Mohammad F, Khan MMA, Al-Whaibi MH (2012) Cumulative effect of nitrogen and Sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139–153PubMedCrossRefPubMedCentralGoogle Scholar
  130. Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A 92:9373–9377PubMedPubMedCentralCrossRefGoogle Scholar
  131. Song Y, Cui J, Zhang H, Wang G, Zhao FJ, Shen Z (2012) Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant Soil 366:647–658CrossRefGoogle Scholar
  132. Srivalli S, Khanna-Chopra R (2008) Role of glutathione in abiotic stress tolerance. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, pp 207–225CrossRefGoogle Scholar
  133. Srivastava S, D’souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (Lf) Royle. Ecotoxicol Environ Saf 73:1314–1322PubMedCrossRefPubMedCentralGoogle Scholar
  134. Sun XM, Lu B, Huang SQ, Mehta SK, Xu LL, Yang ZM (2007) Coordinated expression of sulfate transporters and its relation with sulfur metabolitesin Brassica napus exposed to cadmium. Bot Stud 48:43–54Google Scholar
  135. Takahashi H (2010) Regulation of sulfate transport and assimilation in plants. Int Rev Cell Mol Biol 281:129–159PubMedCrossRefPubMedCentralGoogle Scholar
  136. Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The role of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171–182PubMedCrossRefPubMedCentralGoogle Scholar
  137. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184PubMedCrossRefPubMedCentralGoogle Scholar
  138. Tong Y, Gabriel-Neumann E, Ngwene B, Krumbein A, George E, Platz S, Rohn S, Schreiner M (2014) Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots. Food Chem 152:190–196PubMedCrossRefPubMedCentralGoogle Scholar
  139. Walker KC, Booth (2003) Sulphur nutrition and oilseed quality. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Springer, Dordrecht, pp 323–339CrossRefGoogle Scholar
  140. Wang F, Chen F, Cai Y, Zhang G, Wu F (2011) Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biol Trace Elem Res 144:1275–1288PubMedCrossRefPubMedCentralGoogle Scholar
  141. Wawrzyńska A, Lewandowska M, Sirko A (2010) Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation. J Exp Bot 61:889–900PubMedCrossRefPubMedCentralGoogle Scholar
  142. Wei B, Zhang W, Chao J, Zhang T, Zhao T, Noctor G, Liu Y, Han Y (2017) Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis. Sci Rep 7:2615.  https://doi.org/10.1038/s41598-017-02872-0 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Wirtz M, Birke H, Heeg C, Müller C, Hosp F, Throm C, Konig S, Feldman-Salit A, Rippe K, Petersen G, Wade RC, Rybin V, Scheffzek K, Hell R (2010) Structure and function of the hetero-oligomeric cysteine synthase complex in plants. J Biol Chem 285:32810–32817PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66.  https://doi.org/10.3389/fpls.2016.00066 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Wu JC, Sun SH, Ke YT, Xie CP, Chen FX (2011) Effects of glutathione on chloroplast membrane fluidity and the glutathione circulation system in young loquat fruits under low temperature stress. Acta Hortic 887:221–225CrossRefGoogle Scholar
  146. Yatusevich R, Mugford SG, Matthewman C, Gigolashvili T, Frerigmann H, Delaney S, Koprivova A, Flugge UI, Kopriva S (2010) Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. Plant J 62:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  147. Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473PubMedCrossRefPubMedCentralGoogle Scholar
  148. Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zhang J, Zhao QZ, Duan GL, Huang YC (2011) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40CrossRefGoogle Scholar
  151. Zhu DB, Hu KD, Guo XK, Liu Y, Hu LY, Li YH, Wang SH, Zhang H (2015) Sulfur dioxide enhances endogenous hydrogen sulfide accumulation and alleviates oxidative stress induced by aluminum stress in germinating wheat seeds. Oxidative Med Cell Longev.  https://doi.org/10.1155/2015/612363

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mirza Hasanuzzaman
    • 1
  • Md. Shahadat Hossain
    • 2
  • M. H. M. Borhannuddin Bhuyan
    • 2
    • 3
  • Jubayer Al Mahmud
    • 4
  • Kamrun Nahar
    • 5
  • Masayuki Fujita
    • 2
  1. 1.Department of Agronomy, Faculty of AgricultureSher-e-Bangla Agricultural UniversityDhakaBangladesh
  2. 2.Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of AgricultureKagawa UniversityKagawaJapan
  3. 3.Bangladesh Agricultural Research InstituteGazipurBangladesh
  4. 4.Department of Agroforestry and Environmental Science, Faculty of AgricultureSher-e-Bangla Agricultural UniversityDhakaBangladesh
  5. 5.Department of Agricultural Botany, Faculty of AgricultureSher-e-Bangla Agricultural UniversityDhakaBangladesh

Personalised recommendations