Multifunctional Photoplethysmography Sensor Design for Respiratory and Cardiovascular Diagnosis

  • Durmus Umutcan Uguz
  • Boudewijn Venema
  • Steffen Leonhardt
  • Daniel Teichmann
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 68/2)


Photoplethysmography (PPG) is a transcutaneous optical signal acquisition method to monitor blood volume variations to assess cardiovascular health. Using a light source and a photodetector, PPG signals can be acquired and used in a vast application area. For the estimation of vital parameters like respiratory and heart rate, different properties of this pulsatile wave need to be further analyzed. This demands the utilization of different sensor techniques to be used like motion sensors, skin temperature monitoring and different wavelengths of light sources. This paper represents the proposed multipurpose PPG sensor design, called SmartPPG, which is able to measure multi-wavelength PPG from different skin penetration depths as well as skin temperature while providing motion tracking via an accelerometer. The manufactured prototype was tested for different PPG techniques to evaluate its applicability for arterial, venous and respiratory diagnosis.


Photoplethysmography Pulse oximetry Respiratory rate Cardiovascular diagnostic Venous muscle pump test 



The authors acknowledge ELCAT GmbH, Wolfratshausen for their cooperation in this project funded by the Federal Ministry for Economic Affairs and Energy under The Central Innovation Programme. The authors would like to thank Prof. Dr-Ing. Vladimir Blazek for his helpful comments and valuable discussions.

Ethics Statement and Conflict of Interest

The Institution’s Ethical Review Board approved all experimental procedures involving human subjects under the reference code EK 024/18. The authors declare that they have no conflict of interest.


  1. 1.
    J. Perk, G. De Backer, H. Gohlke, I. Graham, Ž. Reiner, W.M. Verschuren, C. Albus, P. Benlian, G. Boysen, R. Cifkova, et al., Atherosclerosis 223(1), 1 (2012)Google Scholar
  2. 2.
    P.T. O’gara, F.G. Kushner, D.D. Ascheim, D.E. Casey, M.K. Chung, J.A. De Lemos, S.M. Ettinger, J.C. Fang, F.M. Fesmire, B.A. Franklin, et al., Circulation 127(4), 529 (2013)Google Scholar
  3. 3.
    U. Schultz-Ehrenburg, V. Blazek, Skin Pharmacology and Physiology 14(5), 316 (2001)Google Scholar
  4. 4.
    Q. Yousef, M. Reaz, M.A.M. Ali, Measurement Science Review 12(6), 266 (2012)Google Scholar
  5. 5.
    N. Blanik, A.K. Abbas, B. Venema, V. Blazek, S. Leonhardt, Journal of biomedical optics 19(1), 016012 (2014)Google Scholar
  6. 6.
    V. Blazek. Vorrichtung und verfahren zur optoelektonischen, bewegungsartefakte-kompensierten erfassung und hauttiefenselektiver analyse der beinvenenhämodynamik (2010). Dt. Patentanmeldeschrift 10 2010 056 503.2Google Scholar
  7. 7.
    C. Blazek, V. Blazek. Bewegungskorreliertes verfahren und optoelektronische vorrichtung zur nichtinvasiven bestimmung der dermalvenösen sauerstoffversorgung peripherer beingebiete (2011). Dt. Patentanmeldeschrift 10 2011 122 700.1Google Scholar
  8. 8.
    Y. Maeda, M. Sekine, T. Tamura, Journal of medical systems 35(5), 829 (2011)Google Scholar
  9. 9.
    Y. Mendelson, B.D. Ochs, IEEE Transactions on Biomedical Engineering 35(10), 798 (1988)Google Scholar
  10. 10.
    M.J. Hayes, P.R. Smith, IEEE Transactions on Biomedical Engineering 48(4), 452 (2001)Google Scholar
  11. 11.
    B.S. Kim, S.K. Yoo, IEEE transactions on biomedical engineering 53(3), 566 (2006)Google Scholar
  12. 12.
    H. Han, M.J. Kim, J. Kim, in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (IEEE, 2007), pp. 1538–1541Google Scholar
  13. 13.
    K.A. Herborn, J.L. Graves, P. Jerem, N.P. Evans, R. Nager, D.J. McCafferty, D.E. McKeegan, Physiology & behavior 152, 225 (2015)Google Scholar
  14. 14.
    Analog Devices, ADPD105 Photometric Front End with I2C (2016). Rev. 0Google Scholar
  15. 15.
    STMicroelectronics, LIS2HH12 MEMS digital output motion sensor: ultra-low power high performance 3-axes pico-accelerometer (2015). Rev. 5Google Scholar
  16. 16.
    STMicroelectronics, M24C16 16-Kbit serial I2C bus EEPROM (2016). Rev. 8Google Scholar
  17. 17.
    Melexis Microelectronic Integrated Systems, MLX9061 Infrared Thermometer (2008). Rev. 8Google Scholar
  18. 18.
    A. Schäfer, J. Vagedes, International journal of cardiology 166(1), 15 (2013)Google Scholar
  19. 19.
    V. Blazek, N. Blanik, C.R. Blazek, M. Paul, C. Pereira, M. Koeny, B. Venema, S. Leonhardt, Anesthesia & Analgesia 124(1), 104 (2017)Google Scholar
  20. 20.
    K. Takazawa, N. Tanaka, M. Fujita, O. Matsuoka, T. Saiki, M. Aikawa, S. Tamura, C. Ibukiyama, Hypertension 32(2), 365 (1998)Google Scholar
  21. 21.
    J.G. Webster, Design of pulse oximeters (CRC Press, 1997)Google Scholar
  22. 22.
    A. Fronek, Dermatologic surgery 21(1), 64 (1995)Google Scholar
  23. 23.
    P. Grossman, E.W. Taylor, Biological psychology 74(2), 263 (2007)Google Scholar
  24. 24.
    W. Karlen, S. Raman, J.M. Ansermino, G.A. Dumont, IEEE Transactions on Biomedical Engineering 60(7), 1946 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Durmus Umutcan Uguz
    • 1
  • Boudewijn Venema
    • 2
  • Steffen Leonhardt
    • 1
  • Daniel Teichmann
    • 1
  1. 1.Chair for Medical Information TechnologyRWTH Aachen UniversityAachenGermany
  2. 2.Department of Optical SensorsHuf Huelsbeck & Fuerst GmbH & Co. KGVelbertGermany

Personalised recommendations