Advertisement

Virtual Biopsies with Handheld Dual-Axis Confocal Microscope

  • Wibool Piyawattanametha
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 68/2)

Abstract

We demonstrate a novel microelectromechanical system (MEMS) based Dual-Axes confocal (DAC) microscope in a 10-mm diameter handheld package. Miniaturization is achieved by using a barbell-shaped, gimbaled, two-dimensional (2-D) MEMS scanner that is actuated by self-aligned vertical comb actuators. The maximum DC optical scan angles are ±4.25° on the inner axis and ±1.5° on the outer axis, and the corresponding resonance frequencies are 3.4 and 1.2 kHz. The maximum imaging rate is 5 frames/s. The miniature DAC microscope operating at 785-nm-wavelength achieves full-width-half-maximum (FWHM) transverse and axial resolutions of 4.5 μm and 5 μm, respectively.

Keywords

Confocal microscope 2-D MEMS scanner Imaging High resolution image 3-D image 

Notes

Acknowledgements

This work is partially supported from the Fraunhofer-Bessel Research Award, Alexander von Humboldt Foundation, Germany; the Newton Fund, British Council, United Kingdom; the internal research fund, the King Mongkut’s Institute of Technology Ladkrabang, Thailand; the RRI fund, Thailand Research Fund, Thailand; and the starting-up fund, National Research Council, Thailand.

References

  1. 1.
    T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, “Dual-axis confocal microscope for high-resolution in vivo imaging,” Opt. Lett., vol. 28, pp. 414–416, 2003.Google Scholar
  2. 2.
    T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, “Dual-Axes confocal microscopy with post-objective scanning and low coherence heterodyne detection,” Opt. Lett., vol. 28, pp. 1915–1917, 2003.Google Scholar
  3. 3.
    Z. Qiu and W. Piyawattanametha, “MEMS-Based Medical Endomicroscopes,” Journal of Selected Topics in Quantum Electronics (JSTQE), Vol. 21, No. 4, August 16, 2015,  https://doi.org/10.1109/jstqe.2015.2389530.
  4. 4.
    H. Ra, Y. Taguchi, D. Lee, W. Piyawattanametha, and O. Solgaard, “Two-Dimensional MEMS scanner for Dual-Axes Confocal In Vivo Microscopy,” MEMS 2006, IEEE Int. Conf. on Micro Electro Mechanical Systems, Turkey, 2006, pp. 862–865.Google Scholar
  5. 5.
    H. Ra, W. Piyawattanametha, Y. Taguchi, and O. Solgaard, “Dual-Axes Confocal Fluorescence Microscopy with a Two-Dimensional MEMS Scanner,” IEEE Int. Conf. on Opt. Micro. Electro. Mech. Syt., Montana, Aug 21–24, 2006, pp. 166–167.Google Scholar
  6. 6.
    W. Piyawattanametha, J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, P. Hsiung, T. D. Wang, G. S. Kino, and O. Solgaard, “MEMS Based Dual-Axes Confocal Reflectance Handheld Microscope for in vivo Imaging,” in IEEE Int. Conf. on Opt. Micro. Electro. Mech. Sys., Montana, Aug 21–24, 2006, pp. 164-165.Google Scholar
  7. 7.
    W. Piyawattanametha, H. Ra, Z. Qiu, S. Friedland, J. T. C. Liu, K. Loewke, G. S. Kino, O. Solgaard, T. D. Wang, M. J. Mandella, and C. H. Contag, “In Vivo Near-infrared Dual-Axis Confocal Microendoscopy in the Human Lower Gastrointestinal Tract,” Journal of Biomedical Optics 17(2), February 2012, 021102:1–4.Google Scholar
  8. 8.
    W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, “Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror,” Opt. Lett., vol. 31, no. 13, July 1, 2006, pp. 2018–2020.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Departments of Biomedical and Electronics EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations