Advertisement

The Implications of the Lead Theory on the Patch ECG Devices Positioning and Measurement

  • Ivan Tomasic
  • Aleksandra Rashkovska
  • Roman Trobec
  • Maria Lindén
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 68/1)

Abstract

Currently we are witnessing fast development of patch ECG devices, some of which have already been extensively evaluated and shown to be useful for detecting arrhythmias. The research about using the patch ECG devices for purposes other than arrhythmia detection has been scarce. The efficiency of patch electrocardiography for a specific purpose can depend on the devices location on the body surface. It is still an open question where to position the ECG patch devices, and should the position depend on the specific purpose and perhaps even be personalized. We present the lead theory of differential leads (ECG leads obtained by patch ECG devices) and discuss its implications on the patch ECG devices positioning on the body surface.

Keywords

Electrocardiography ECG Lead theory Differential lead Bipolar lead Patch monitors Remote monitoring Telemonitoring 

Notes

Acknowledgements

I. Tomasic gratefully acknowledges the funding by the Swedish Knowledge Foundation (KKS), project name: CCOPD (reference number 20160029), and support by the Embedded sensor systems for health research profile, also funded by the KKS. R. Trobec and A. Rashkovska acknowledge the financial support of the Slovenian Research Agency under Grant P2-0095.

References

  1. 1.
    Baig, M.M., Gholamhosseini, H., Connolly, M.J.: A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. MBEC 51(5), 485–495 (2013)Google Scholar
  2. 2.
    Fung, E., Jrvelin, M.R., Doshi, R.N., Shinbane, J.S., Carlson, S.K., Grazette, L.P., Chang, P.M., Sangha, R.S., Huikuri, H.V., Peters, N.S.: Electrocardiographic patch devices and contemporary wireless cardiac monitoring. Front Physiol 6, 149 (2015)Google Scholar
  3. 3.
    Guzik, P., Malik, M.: ECG by mobile technologies. J Electrocardiol 49(6), 894–901 (2016)Google Scholar
  4. 4.
    Rashkovska, A., Avbelj, V.: Abdominal fetal ECG measured with differential ECG sensor. In: MIPRO, pp. 289–291 (2017)Google Scholar
  5. 5.
    Trobec, R., Rashkovska, A., Avbelj, V.: Two proximal skin electrodes–a respiration rate body sensor. Sensors (Basel) 12(10), 13,813–13,828 (2012)Google Scholar
  6. 6.
    Tomasic, I., Avbelj, V., Trobeca, R.: Smart wireless sensor for physiological monitoring. Studies in Health Technology and Informatics 211, 259–301 (2015)Google Scholar
  7. 7.
    Trobec, R., Tomasic, I., Rashkovska, A., Depolli, M., Avbelj, V.: Commercial ECG systems. In: Body Sensors and Electrocardiography, chap. 6, pp. 101–114. Springer International Publishing (2018)Google Scholar
  8. 8.
    Trobec, R., Tomasic, I.: Synthesis of the 12-lead electrocardiogram from differential leads. IEEE Trans Inf Technol Biomed 15(4), 615–621 (2011)Google Scholar
  9. 9.
    Puurtinen, M., Viik, J., Hyttinen, J.: Best electrode locations for a small bipolar ECG device: signal strength analysis of clinical data. Ann Biomed Eng 37(2), 331–336 (2009)Google Scholar
  10. 10.
    Tomašić, I., Trobec, R.: Electrocardiographic systems with reduced numbers of leads-synthesis of the 12-lead ECG. IEEE Rev Biomed Eng 7, 126–142 (2014)Google Scholar
  11. 11.
    Vozda, M., Cerny, M.: Methods for derivation of orthogonal leads from 12-lead electrocardiogram: A review. Biomed. Signal Proces. 19, 23–34 (2015)Google Scholar
  12. 12.
    Figueiredo, C.P., Mendes, P.M.: Towards wearable and continuous 12-lead electrocardiogram monitoring: Synthesis of the 12-lead electrocardiogram using 3 wireless single-lead sensors. In: BIODEVICES, pp. 329–332 (2012)Google Scholar
  13. 13.
    Chen, F., Pan, Y., Li, K., Cheng, K.T., Huan, R.: Standard 12-lead ECG synthesis using a GA optimized BP neural network. In: ICACI, pp. 289–293 (2015)Google Scholar
  14. 14.
    Yodjaiphet, A., Theera-Umpon, N., Auephanwiriyakul, S.: Electrocardiogram reconstruction using support vector regression. In: ISSPIT, pp. 269–273 (2012)Google Scholar
  15. 15.
    Tomasic, I., Trobec, R., Lindén, M.: Can the regression trees be used to model relation between ECG leads? In: Internet of Things. IoT Infrastructures, pp. 467–472. Springer International Publishing (2016)Google Scholar
  16. 16.
    Lee, J., Kim, M., Kim, J.: Reconstruction of precordial lead electrocardiogram from limb leads using the state-space model. IEEE J Biomed Health 20(3), 818–828 (2016)Google Scholar
  17. 17.
    Tsouri, G.R., Ostertag, M.H.: Patient-specific 12-lead ECG reconstruction from sparse electrodes using independent component analysis. IEEE J Biomed Health 18(2), 476–482 (2014)Google Scholar
  18. 18.
    Tomašić, I., Skala, K., Trobec, R.: Principal component analysis and visualization in optimization and personalization of lead’s set for generation of standard 12-leads ECG. In: MIPRO, pp. 307–313 (2008)Google Scholar
  19. 19.
    Mann, S., Orglmeister, R.: PCA-based ECG lead reconstruction. Biomedizinische Technik. Biomedical engineering 58(Supp. 1), 24–25 (2013)Google Scholar
  20. 20.
    Dawson, D., Yang, H., Malshe, M., Bukkapatnam, S.T.S., Benjamin, B., Komanduri, R.: Linear affine transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals. J Electrocardiol 42(6), 622–630 (2009)Google Scholar
  21. 21.
    Padhy, S., Dandapat, S.: Synthesis of 12-lead ECG from a reduced lead set using singular value decomposition. PCITC pp. 316–320 (2015)Google Scholar
  22. 22.
    Padhy, S., Dandapat, S.: SVD analysis on reduced 3-lead ECG data. In: Advances in Communication and Computing, pp. 253–260. Springer India, New Delhi (2015)Google Scholar
  23. 23.
    Maheshwari, S., Acharyya, A., Schiariti, M., Puddu, P.E.: Personalized reduced 3-lead system formation methodology for remote health monitoring applications and reconstruction of standard 12-lead system. Int Arch Med 8 (2015).  https://doi.org/10.3823/1661
  24. 24.
    Nallikuzhy, J.J., Dandapat, S.: Enhancement of the spatial resolution of ECG using multi-scale linear regression. In: Proceedings of NCC, pp. 1–6 (2015)Google Scholar
  25. 25.
    Nallikuzhy, J.J., Dandapat, S.: Spatial enhancement of ECG using diagnostic similarity score based lead selective multi-scale linear model. Comput Biol Med 85, 53–62 (2017)Google Scholar
  26. 26.
    Kors, J.A.: Lead transformations and the dipole approximation: Practical applications. J. Electrocardiol. 48(6), 1040–1044 (2015).  https://doi.org/10.1016/j.jelectrocard.2015.08.015
  27. 27.
    Cao, H., Li, H., Stocco, L., Leung, V.C.M.: Wireless three-pad ECG system: Challenges, design, and evaluations. J Commun Netw 13(2), 113–124 (2011)Google Scholar
  28. 28.
    Hansen, I.H., Hoppe, K., Gjerde, A., Kanters, J.K., Sorensen, H.B.D.: Comparing twelve-lead electrocardiography with close-to-heart patch based electrocardiography. In: EMBC, pp. 330–333 (2015)Google Scholar
  29. 29.
    Farotto, D., Atallah, L., van der Heijden, P., Grieten, L.: ECG synthesis from separate wearable bipolar electrodes. In: EMBC, pp. 5058–5061 (2015)Google Scholar
  30. 30.
    Tomašić, I., Frljak, S., Trobec, R.: Estimating the universal positions of wireless body electrodes for measuring cardiac electrical activity. IEEE Trans Inf Technol Biomed 60(12), 3368–3374 (2013)Google Scholar
  31. 31.
    Hsu, C.H., Wu, S.H.: Robust signal synthesis of the 12-lead ECG using 3-lead wireless ECG systems. In: ICC, pp. 3517–3522 (2014)Google Scholar
  32. 32.
    Lee, H., Lee, D., Kwon, H., Kim, D., Park, K.: Reconstruction of 12-lead ECG using a single-patch device. Method Inform Med 56(4), 319–327 (2017)Google Scholar
  33. 33.
    Janata, A., Lemmert, M.E., Russell, J.K., Gehman, S., Fleischhackl, R., Robak, O., Pernicka, E., Sterz, F., Gorgels, A.P.: Quality of ECG monitoring with a miniature ECG recorder. Pace. 31(6), 676–684 (2008)Google Scholar
  34. 34.
    Lemmert, M.E., Janata, A., Erkens, P., Russell, J.K., Gehman, S., Nammi, K., Crijns, H.J., Sterz, F., Gorgels, A.P.: Detection of ventricular ectopy by a novel miniature electrocardiogram recorder. J. Electrocardiol. 44(2), 222–228 (2011)Google Scholar
  35. 35.
    Torfs, T., Smeets, C.J., Geng, D., Berset, T., der Auwera, J.V., Vandervoort, P., Grieten, L.: Clinical validation of a low-power and wearable ECG patch for long term full-disclosure monitoring. J. Electrocardiol. 47(6), 881–889 (2014)Google Scholar
  36. 36.
    Barrett, P.M., Komatireddy, R., Haaser, S., Topol, S., Sheard, J., Encinas, J., Fought, A.J., Topol, E.J.: Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am. J. Med. 127(1), 95.e11–7 (2014)Google Scholar
  37. 37.
    Fensli, R., Gundersen, T., Snaprud, T., Hejlesen, O.: Clinical evaluation of a wireless ECG sensor system for arrhythmia diagnostic purposes. Med Eng Phys 35(6), 697–703 (2013)Google Scholar
  38. 38.
    Saadi, D., Fauerskov, I., Osmanagic, A., Sheta, H., Sorensen, H., Egstrup, K., Hoppe, K.: Heart rhythm analysis using ECG recorded with a novel sternum based patch technology: A pilot study. In: CARDIOTECHNIX, pp. 15–21 (2013)Google Scholar
  39. 39.
    Väisänen, J., Puurtinen, M., Hyttinen, J., Viik, J.: Short distance bipolar electrocardiographic leads in diagnosis of left ventricular hypertrophy. Computing in Cardiology 37, 293–296 (2010)Google Scholar
  40. 40.
    Puurtinen, M., Väisänen, J., Viik, J., Hyttinen, J.: New precordial bipolar electrocardiographic leads for detecting left ventricular hypertrophy. J Electrocardiol 43(6), 654–659 (2010)Google Scholar
  41. 41.
    Puurtinen, M., Nieminen, T., Kähönen, M., Lehtimäki, T., Lehtinen, R., Nikus, K., Hyttinen, J., Viik, J.: Value of leads V4R and CM5 in the detection of coronary artery disease during exercise electrocardiographic test. Clin Physiol Funct I 30(4), 308–312 (2010)Google Scholar
  42. 42.
    Haddad, M.E., Vervloet, D., Taeymans, Y., Buyzere, M.D., Bov, T., Stroobandt, R., Duytschaever, M., Malmivuo, J., Gheeraert, P.: Diagnostic accuracy of a novel method for detection of acute transmural myocardial ischemia based upon a self-applicable 3-lead configuration. J. Electrocardiol. 49(2), 192–201 (2016)Google Scholar
  43. 43.
    Trobec, R., Tomasic, I., Rashkovska, A., Depolli, M., Avbelj, V.: Lead theory of differential leads and synthesis of the standard 12-lead ECG. In: Body Sensors and Electrocardiography, chap. 5, pp. 77–100. Springer International Publishing (2018)Google Scholar
  44. 44.
    Malmivuo, J., Plonsey, R.: Dipole. In: Bioelectromagnetism, chap. 8.2. Oxford University Press (1995)Google Scholar
  45. 45.
    Griffiths, D.J.: The electric field of a dipole. In: Introduction to Electrodynamics, 3 edn., chap. 3.4.4, pp. 153–155. Prentice Hall (1999)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ivan Tomasic
    • 1
  • Aleksandra Rashkovska
    • 2
  • Roman Trobec
    • 2
  • Maria Lindén
    • 1
  1. 1.Mälardalen UniversityVästeråsSweden
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations