Modelling Details for Electric Field Simulations of Deep Brain Stimulation

  • Johannes D. JohanssonEmail author
  • Fabiola Alonso
  • Karin Wårdell
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 68/1)


Deep brain stimulation is a well-established technique for symptomatic treatment of e.g. Parkinson’s disease and essential tremor. Computer simulations using the finite element method (FEM) are widely used to estimate the affected area around the DBS electrodes. For the reliability of the simulations, it is important to match used simulation parameters with experimental data. One such parameter is the electric field magnitude threshold EFt required for axon stimulation. Another is the conductivity of the perielectrode space (PES) around the electrode. At the acute stage after surgery the PES will be characterized by an increased conductivity due to inflammation and edema while the later chronic stage will be characterized by a lower conductivity due to gliosis and minor scar formation. In this study, the EFt and the electric conductivity of the PES have been estimated by comparing FEM simulations with clinical studies of activation distance, pulse length and electrode impedance. The resulting estimates are an EFt of 0.2 V/mm at the common pulse width of 60 µs and a chronaxie of 62 µs. Estimated electric conductivities for the PES are 0.14 S/m in the acute stage and 0.05 S/m in the chronic stage, assuming a PES width of 250 µm. These values are thus experimentally justified to use in FEM simulations of DBS.


Deep brain stimulation (DBS) Finite element method (FEM) Electric field (EF) 



This work is funded by the Swedish Research Council (Vetenskapsrådet, Dnr. 2016-03564), the Swedish Foundation for Strategic Research (Project BD15-0032), and the Knut and Alice Wallenberg Foundation (Project Seeing Organ Function). The authors declare that they have no conflicts of interest.


  1. 1.
    Blomstedt, P., Hariz, G. M., and Hariz, M. I., Pallidotomy versus pallidal stimulation, Parkinsonism Relat Disord, 12(5) pp. 296–301, (2006).Google Scholar
  2. 2.
    Schuurman, P. R., Bosch, D. A., Merkus, M. P., and Speelman, J. D., Long-term follow-up of thalamic stimulation versus thalamotomy for tremor suppression, Mov Disord, 23(8) pp. 1146–53, (2008).Google Scholar
  3. 3.
    Eltahawy, H. A., Saint-Cyr, J., Giladi, N., Lang, A. E., and Lozano, A. M., Primary dystonia is more responsive than secondary dystonia to pallidal interventions: Outcome after pallidotomy or pallidal deep brain stimulation, Neurosurgery, 54(3) pp. 613–619, (2004).Google Scholar
  4. 4.
    Marin, C., Jimenez, A., Tolosa, E., Bonastre, M., and Bove, J., Bilateral subthalamic nucleus lesion reverses L-dopa-induced motor fluctuations and facilitates dyskinetic movements in hemiparkinsonian rats, Synapse, 51(2) pp. 140–50, (2004).Google Scholar
  5. 5.
    Galarreta, M. and Hestrin, S., Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex, Nat Neurosci, 1(7) pp. 587–94, (1998).Google Scholar
  6. 6.
    Urbano, F. J., Leznik, E., and Llinás, R. R., Cortical activation patterns evoked by afferent axons stimuli at different frequencies: an in vitro voltage-sensitive dye imaging study, Thalamus & Related Systems, 1(4) pp. 371–378, (2002).Google Scholar
  7. 7.
    Brocker, D. T., Swan, B. D., So, R. Q., Turner, D. A., Gross, R. E., and Grill, W. M., Optimized temporal pattern of brain stimulation designed by computational evolution, Sci Transl Med, 9(371) 2017).Google Scholar
  8. 8.
    Geddes, L. A., Accuracy limitations of chronaxie values, IEEE Trans Biomed Eng, 51(1) pp. 176–81, (2004).Google Scholar
  9. 9.
    Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., et al., Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters, J Neurol Neurosurg Psychiatry, 71(2) pp. 215–9, (2001).Google Scholar
  10. 10.
    Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., and Deisseroth, K., Optical deconstruction of parkinsonian neural circuitry, Science, 324(5925) pp. 354–9, (2009).Google Scholar
  11. 11.
    Hassler, R., Riechert, T., Mundinger, F., Umbach, W., and Ganglberger, J. A., Physiological observations in stereotaxic operations in extrapyramidal motor disturbances, Brain, 83 pp. 337–50, (1960).Google Scholar
  12. 12.
    Åström, M., Diczfalusy, E., Martens, H., and Wårdell, K., Relationship between Neural Activation and Electric Field Distribution during Deep Brain Stimulation, IEEE Transactions on Biomedical Engineering, 62(2) pp. 664–672, (2015).Google Scholar
  13. 13.
    Hemm, S., Pison, D., Alonso, F., Shah, A., Coste, J., Lemaire, J. J., et al., Patient-Specific Electric Field Simulations and Acceleration Measurements for Objective Analysis of Intraoperative Stimulation Tests in the Thalamus, Front Hum Neurosci, 10 p. 577, (2016).Google Scholar
  14. 14.
    Alonso, F., Latorre, M. A., Göransson, N., Zsigmond, P., and Wårdell, K., Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study, Brain Sciences, 6(3) 2016).Google Scholar
  15. 15.
    Horn, A., Reich, M., Vorwerk, J., Li, N. F., Wenzel, G., Fang, Q. Q., et al., Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease, Annals of Neurology, 82(1) pp. 67–78, (2017).Google Scholar
  16. 16.
    Perez-Caballero, L., Perez-Egea, R., Romero-Grimaldi, C., Puigdemont, D., Molet, J., Caso, J. R., et al., Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs, Mol Psychiatry, 19(5) pp. 607–14, (2014).Google Scholar
  17. 17.
    Kozai, T. D., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C., and Cui, X. T., Brain tissue responses to neural implants impact signal sensitivity and intervention strategies, ACS Chem Neurosci, 6(1) pp. 48–67, (2015).Google Scholar
  18. 18.
    Alonso, F., Hemm-Ode, S., and Wårdell, K., Influence on Deep Brain Stimulation from Lead Design, Operating Mode and Tissue Impedance Changes – A Simulation Study, Brain Disorders & Therapy, 4(3) 2015).Google Scholar
  19. 19.
    Yousif, N., Bayford, R., Bain, P. G., and Liu, X., The peri-electrode space is a significant element of the electrode-brain interface in deep brain stimulation: A computational study, Brain Research Bulletin, 74(5) pp. 361–368, (2007).Google Scholar
  20. 20.
    Nielsen, M. S., Bjarkam, C. R., Sorensen, J. C., Bojsen-Moller, M., Sunde, N. A., and Ostergaard, K., Chronic subthalamic high-frequency deep brain stimulation in Parkinson’s disease - a histopathological study, European Journal of Neurology, 14(2) pp. 132–138, (2007).Google Scholar
  21. 21.
    Haberler, C., Alesch, F., Mazal, P. R., Pilz, P., Jellinger, K., Pinter, M. M., et al., No tissue damage by chronic deep brain stimulation in Parkinson’s disease, Annals of Neurology, 48(3) pp. 372–376, (2000).Google Scholar
  22. 22.
    Kuncel, A. M., Cooper, S. E., and Grill, W. M., A method to estimate the spatial extent of activation in thalamic deep brain stimulation, Clin Neurophysiol, 119(9) pp. 2148–58, (2008).Google Scholar
  23. 23.
    Lungu, C., Malone, P., Wu, T., Ghosh, P., McElroy, B., Zaghloul, K., et al., Temporal macrodynamics and microdynamics of the postoperative impedance at the tissue-electrode interface in deep brain stimulation patients, J Neurol Neurosurg Psychiatry, 85(7) pp. 816–9, (2014).Google Scholar
  24. 24.
    Hemm, S., Mennessier, G., Vayssiere, N., Cif, L., and Coubes, P., Co-registration of stereotactic MRI and isofieldlines during deep brain stimulation, Brain Res Bull, 68(1–2) pp. 59-61, (2005).Google Scholar
  25. 25.
    McIntyre, C. C., Mori, S., Sherman, D. L., Thakor, N. V., and Vitek, J. L., Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus, Clin Neurophysiol, 115(3) pp. 589–95, (2004).Google Scholar
  26. 26.
    Liewald, D., Miller, R., Logothetis, N., Wagner, H. J., and Schuz, A., Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque, Biological Cybernetics, 108(5) pp. 541–557, (2014).Google Scholar
  27. 27.
    Mathai, A., Wichmann, T., and Smith, Y., More Than Meets the Eye-Myelinated Axons Crowd the Subthalamic Nucleus, Movement Disorders, 28(13) pp. 1811–1815, (2013).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden

Personalised recommendations