Advertisement

Alternative Strategies to Regulate Quorum Sensing and Biofilm Formation of Pathogenic Pseudomonas by Quorum Sensing Inhibitors of Diverse Origins

  • P. Sankar Ganesh
  • V. Ravishankar Rai
Chapter

Abstract

Pathogenic Pseudomonas species produce virulence elements and form biofilm through quorum sensing (QS) system. Clinical infections caused by Pseudomonas aeruginosa are becoming increasingly tough to treat on account of wide spread drug resistance. The drugs have lost their efficacy due to the virulence elements and biofilms, which are responsible for increased severity of the infection. The search for novel drugs has increased and novel modes of action against Gram-negative pathogenic bacteria are been much more of important. Plants secondary metabolites are widely used for treating the many bacterial diseases. Plant-derived anti-QS and anti-biofilm compounds that do not negatively affect the growth of the bacterial cells, but rather attenuates the QS controlled virulence factors, that might allow the host defense to act more effectively to washout the P. aeruginosa infection. In this review mainly focus on overview of pathogenicity, QS controlled virulence factors and biofilm formation of P. aeruginosa infection. This review describes a brief account of QS inhibitors and anti-biofilm compounds, which exhibit alternative medicine possible for treating drug resistant P. aeruginosa.

Keywords

Infections Pseudomonas aeruginosa Cell to cell communication Biofilm Phytochemical Virulence factors Caenorhabditis elegans 

Abbreviations

AHL

N-acyl homoserine lactone

AIDS

Acquired immune diseases

AIs

Autoinducers

C12 – HSL

N-dodecanoyl-homoserine lactone

C4-HSL

N-butyrl –L-homosrine lactone

CNS

Cerebrospinal fluid

CO2

Carbon dioxide

3-Oxo-C12-HSL

N-3-oxo-dodecanoyl-homoserine lactone

EPS

Exopolymeric substance

EVD

External ventricular drainage

HCN

Hydrogen cyanide

ICU

Intensive care unit

QS

Quorum sensing

QSI

Quorum sensing inhibitor

SAM

S-adenosyl methione

References

  1. Adonizio A, Kong KF, Mathee K (2008a) Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 52:198–203.  https://doi.org/10.1128/AAC.00612-07 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adonizio A, Leal SM, Ausubel FM, Mathee K (2008b) Attenuation of Pseudomonas aeruginosa virulence by medicinal plants in a Caenorhabditis elegans model system. J Med Microbiol 57:809–813.  https://doi.org/10.1099/jmm.0.47802-0 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albus A, Pesci E, Runyen-Janecky L, West S, Iglewski B (1997) Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3928–3935.  https://doi.org/10.1128/jb.179.12.3928-3935.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050.  https://doi.org/10.1016/j.cell.2007.03.004 CrossRefPubMedGoogle Scholar
  5. Annapoorani A, Umamageswaran V, Parameswari R, Pandian SK, Ravi AV (2012) Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des 26:1067–1077.  https://doi.org/10.1007/s10822-012-9599-1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Atkinson S, Throup JP, Stewart GS, Williams P (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277.  https://doi.org/10.1046/j.1365-2958.1999.01578.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20.  https://doi.org/10.1093/nar/gks1039 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bandara MB, Zhu H, Sankaridurg PR, Wilcox MD (2006) Salicylic acid reduces the production of several potential virulence factors of Pseudomonas aeruginosa associated with microbial keratitis. Invest Ophthalmol Vis Sci 47:4453–4460.  https://doi.org/10.1167/iovs.06-0288 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beceiro A, Tomas M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world. Clin Microbiol Rev 28:185–230.  https://doi.org/10.1128/CMR.00059-12 CrossRefGoogle Scholar
  10. Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense mechanisms. New Phytol 127:617–633.  https://doi.org/10.1111/j.1469-8137.1994.tb02968.x CrossRefGoogle Scholar
  11. Bjarnsholt T, Givskov M (2007) The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem 387:409–414.  https://doi.org/10.1007/s00216-006-0774-x CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bonte SF, Chamot E, Kohler T, Romand JA, van Deldon C (2007) Autoinducer production and quorum-sensing dependent phenotypes of Pseudomonas aeruginosa vary according to isolation site during colonization of incubated patients. BMC Microbiol 7:33.  https://doi.org/10.1186/1471-2180-7-33 CrossRefGoogle Scholar
  13. Bonten MJ, Gaillard CA, van der Hulst R, de Leeuw PW, van der Geest S, Stobberingh EE, Soeters PB (1996) Intermittent enteral feeding: the influence on respiratory and digestive tract colonization in mechanically ventilated intensive-care-unit patients. Am J Respir Crit Care Med 154:394–399.  https://doi.org/10.1164/ajrccm.154.2.8756812 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Braeken K, Daniels R, Ndayizeye M, Vanderleyden J, Michiels J (2008) Quorum sensing bacteria-plants interactions. In: Nautiyal CS, Dion P (ed) Molecular mechanisms of plants and microbe coexistence. Springer, Berlin/Heidelberg, pp 265–289. ISBN: 978-3-540-75574-6.  https://doi.org/10.1007/978-3-540-75575-3
  15. Brint JM, Ohman DE (1995) Synthesis of multiple exoproducts in P. aeruginosa is under the control of Rh1R-Rh1I, another set of regulators in strain PAO1with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 24:7155–7163.  https://doi.org/10.1128/jb.177.24.7155-7163.1995 CrossRefGoogle Scholar
  16. Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA (2012) Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7:e38492.  https://doi.org/10.1371/journal.pone.0038492 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Calfee MW, Coleman JP, Pesci EC (2001) Interference with Pseudomonas quinolone signal synthesis inhibits virulence factors expression by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 98:11633–11637.  https://doi.org/10.1073/pnas.201328498 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carneiro VA, Santos HS, Arruda FV, Bandeira PN, Albuquerque MR, Pereira MO, Henriques M, Cavada BS, Teixeira EHC (2010) Casbane diterpene as a promising natural antimicrobial agent against biofilm-associated infections. Molecules 16:190–201.  https://doi.org/10.3390/molecules16010190 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant-Microbe Interact 11:1119–1129.  https://doi.org/10.1094/MPMI.1998.11.11.1119 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chan CH, Ngoh GC, Yusoff R (2012) A brief review on anti diabetic plants: global distribution, active ingredients, extraction techniques and acting mechanisms. Pharmacogn Rev 6:22–28.  https://doi.org/10.4103/0973-7847.95854 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chang CY, Krishnan T, Wang H, Chen Y, Yin WF, Chong YM, Tan LY, Chong TM, Chan KG (2014) Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Sci Rep 4:7245.  https://doi.org/10.1038/srep07245 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chastre J, Fagon J-Y (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903.  https://doi.org/10.1164/rccm.2105078 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cho HS, Lee JH, Ryu SY, Joo SW, Cho MH, Lee J (2013) Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J Agric Food Chem 61:7120–7126.  https://doi.org/10.1021/jf4009313 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dando SJ, Mackay-Sim A, Norton R, Currie BJ, John JA, Ekberg JA, Batzloff M, Ulett GC, Beacham IR (2014) Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 27:691–726.  https://doi.org/10.1128/CMR.00118-13 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Darby C, Cosma CL, Thomas JH, Manoil C (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:15202–15207.  https://doi.org/10.1073/pnas.96.26.15202 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Davies D (2003) Understating biofilms resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122.  https://doi.org/10.1038/nrd1008 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Deep A, Chaudhary U, Gupta V (2011) Quorum sensing and bacterial pathogenicity: from molecules to disease. J Lab Physicians 3:4–11.  https://doi.org/10.4103/0974-2727.78553 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ding X, Yin B, Qian L, Zeng Z, Li H, Lu Y, Zhou S (2011) Screening of novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J Med Microbiol 60:1827–1834.  https://doi.org/10.1099/jmm.0.024166-0 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281.  https://doi.org/10.3201/eid0702.700277 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890.  https://doi.org/10.3201/eid0809.020063 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dyduch-Sieminska M, Najda A, Dyduch J, Gantner M, Klimek K (2015) The content of secondary metabolites and antioxidant activity of wild strawberry fruit (Fragaria vesca L.) J Anal Methods Chem 2015:831238.  https://doi.org/10.1155/2015/831238 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781.  https://doi.org/10.1016/0092-8674(83)90063-6 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fernandez L, Hancock REW (2012) Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25:661–681.  https://doi.org/10.1128/CMR.00043-12 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fong IW, Tomkins KB (1985) Review of Pseudomonas aeruginosa meningitis with special emphasis on treatment with ceftazidime. Rev Infect Dis 7:604–612CrossRefPubMedCentralPubMedGoogle Scholar
  35. Fugua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275.  https://doi.org/10.1128/jb.176.2.269-275.1994 CrossRefGoogle Scholar
  36. Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214.  https://doi.org/10.1128/JB.183.21.6207-6214.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000–3009CrossRefPubMedCentralPubMedGoogle Scholar
  38. Ganesh PS, Rai VR (2015a) In vitro antibiofilm activity of Murraya koenigii essential oil extracted using supercritical CO2 method against Pseudomonas aeruginosa PAO1. Nat Prod Res 29:2295–2298.  https://doi.org/10.1080/14786419.2015.1004673 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ganesh PS, Rai VR (2015b) Evaluation of anti-bacterial and anti-quorum sensing potential of essential oils extracted by supercritical CO2 method against Pseudomonas aeruginosa. J Essent Oil Bear Pl 18:264–275.  https://doi.org/10.1080/0972060X.2015.1025295 CrossRefGoogle Scholar
  40. Ganesh PS, Rai VR (2016) Inhibition of quorum-sensing-controlled virulence factors of Pseudomonas aeruginosa by Murraya koenigii essential oil: a study in a Caenorhabditis elegans infectious model. J Med Microbiol 65:1528–1535.  https://doi.org/10.1099/jmm.0.000385 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ganesh PS, Rai VR (2017) Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J Tradit Complement Med.  https://doi.org/10.1016/j.jtcme.2017.05.008
  42. Ghosh R, Tiwary BK, Kumar A, Chakraborty R (2014) Guava leaf extract inhibits quorum –sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: whole transcriptome analysis reveals differential gene expression. PLoS One 9:e107703.  https://doi.org/10.1371/journal.pone.0107703 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P, Jayaprakasha GK, Pillai SD, Patil BS (2008) Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol 125:204–208.  https://doi.org/10.1016/j.ijfoodmicro.2008.03.028 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg P, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J Bacteriol 178:6618–6622.  https://doi.org/10.1128/jb.178.22.6618-6622.1996 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hengge R (2009) Principles of c-di-GMP signaling in bacteria. Nat Rev Microbiol 7:263–273.  https://doi.org/10.1038/nrmicro2109 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Henry CR, Flynn HW, Miller D, Forster RK, Alfonso EC (2012) Infectious keratitis progressing to endophthalmitis: a 15-year-study of microbiology, associated factors, and clinical outcomes. Ophthalmology 119:2443–2449.  https://doi.org/10.1016/j.ophtha.2012.06.030 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hoang TT, Sullivan SA, Cusick JK, Schweizer HP (2002) {Beta}-Ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. Microbiology 148:3849–3856.  https://doi.org/10.1099/00221287-148-12-3849 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hocquet D, Nordmann P, Garch FEI, Cabanne L, Plesiat P (2006) Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicr Agents Chemother 50:1347–1351.  https://doi.org/10.1128/AAC.50.4.1347-1351.2006 CrossRefGoogle Scholar
  49. Hoge R, Pelzer A, Rosenau F, Wilhelm S (2010) Weapons of a pathogen: proteases and their role in virulence of Pseudomonas aeruginosa. FORMATEX 2:383–395Google Scholar
  50. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332.  https://doi.org/10.1016/j.ijantimicag.2009.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Huangyutitham V, Guvener ZT, Harwood CS (2013) Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. MBio 4:00242–00213.  https://doi.org/10.1128/mBio.00242-13 CrossRefGoogle Scholar
  52. Husain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary metabolites. J Pharm Bioallied Sci 4:10–20.  https://doi.org/10.4103/0975-7406.92725 CrossRefGoogle Scholar
  53. Husain FM, Ahmad M, Asif M, Tahseen Q (2013) Influence of clove oil on certain quorum-sensing regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. J Biosci 38:835–844CrossRefPubMedCentralPubMedGoogle Scholar
  54. Hussain FM, Ahmad I, Khan MS, Ahmad E, Tahseen Q, Khan MS, Alshabib NA (2015) Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Front Microbiol 6:420.  https://doi.org/10.3389/fmicb.2015.00420 CrossRefGoogle Scholar
  55. Jagani S, Chelikani R, Kim DS (2009) Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 25:321–324.  https://doi.org/10.1080/08927010802660854 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TS, Hoiby N, Bjarnsholt T, Givskov M (2012) Food as a source for quorum sensing inhibitios: Iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 78:2410–2421.  https://doi.org/10.1128/AEM.05992-11 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) The front line of host defense. In: Immunology: The immune system in health and disease. Garland Science, New York, pp 295–340Google Scholar
  58. Jaramillo-Colorado B, Olivero-Verbal J, Stashenko EE, Wagner-Dobler I, Kunze B (2012) Anti-quorum sensing activity of essential oils from Colombian plants. Nat Prod Res 26:1075–1086.  https://doi.org/10.1080/14786419.2011.557376 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Jha B, Kavita K, Westphal J, Hartmann A, Kopplin PS (2013) Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar Drugs 11:253–265.  https://doi.org/10.3390/md11010253 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Juhi T, Bibhabati M, Archana T, Poonam L, Dogra Vinita D (2009) Pseudomonas aeruginosa meningitis in post neurological patients. Neurol Asia 14:95–100Google Scholar
  61. Kaletta T, Hengartner MO (2006) Finding function in targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–399.  https://doi.org/10.1038/nrd2031 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245.  https://doi.org/10.1016/j.biotechadv.2012.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kalia M, Yadav VK, Singh PK, Sharma D, Pandey H, Narvi SS, Agarwal V (2015) Effect of cinnamon oil on quorum sensing –controlled virulence factors and biofilms formation in Pseudomonas aeruginosa. PLoS One 10:e0135495.  https://doi.org/10.1371/journal.pone.0135495 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, Kim EC, Choe KW (2003) Pseudomonas aeruginosa Bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 37:745–751.  https://doi.org/10.1086/377200 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Khan MSA, Zahin M, Hasan S, Husain FM, Ahmad I (2009) Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett Appl Microbiol 49:354–360.  https://doi.org/10.1111/j.1472-765X.2009.02666.x CrossRefPubMedPubMedCentralGoogle Scholar
  66. Khan HA, Ahmad A, Mehboob R (2015) Nosocomial infections and their control strategies. Asian Pac J Trop Dis 5:509–514.  https://doi.org/10.1016/j.apjtb.2015.05.001 CrossRefGoogle Scholar
  67. Kim HS, Park HD (2013) Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One 8:e76106.  https://doi.org/10.1371/journal.pone.0076106 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kim JS, Kim YH, Seo YW, Park S (2007) Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnol Bioprocess Eng 12:308–311.  https://doi.org/10.1007/BF02931109 CrossRefGoogle Scholar
  69. Kim HS, Lee SH, Byun Y, Park HD (2015a) 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 5:8656.  https://doi.org/10.1038/srep08656 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kim YG, Lee JH, Kim S, Baek KH, Lee J (2015b) Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int J Food Microbiol 195:30–39.  https://doi.org/10.1016/j.ijfoodmicro.2014.11.028 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Kirbag S, Zengin F (2009) Antimicrobial activities of extract of some plants. Pakistan. J Bot 41:2067–2070Google Scholar
  72. Kiska DL, Gilligan PH (2003) Pseudomonas. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology. American Society for Microbiology Press, Washington, DC, pp 517–525Google Scholar
  73. Koh KH, Tham FY (2011) Screening of traditional Chinese medicinal plants for quorum-sensing inhibitors activity. J Microbiol Immunol Infect 44:144–148.  https://doi.org/10.1016/j.jmii.2009.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Koh KH, Sam CK, Yin WF, Tan LY, Krishnan T, Chong YM, Chang KG (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensor (Basel) 13:6217–6228.  https://doi.org/10.3390/s130506217 CrossRefGoogle Scholar
  75. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111.  https://doi.org/10.1128/MMBR.00046-12 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lee J, Wu J, Deng Y, Wang J, Wang J, Wang J, Chang C, Dong Y, Williams P, Zhang L (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9:339–343.  https://doi.org/10.1038/nchembio.1225 CrossRefPubMedGoogle Scholar
  77. Lee JY, Park YK, Chung EE, Na IY, Ko KS (2016) Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci Rep 6:25543.  https://doi.org/10.1038/srep25543 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lidor O, Quntar A, Pesci EC, Steinberg D (2015) Mechanistic analysis of a synthetic inhibitor of the Pseudomonas aeruginosa LasI quorum-sensing signal synthase. Sci Rep 5.  https://doi.org/10.1038/srep16569
  79. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610.  https://doi.org/10.1128/CMR.00040-09 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Lu JJ, Bao JL, Wu GS, Xu WS, Huang MQ, Chen XP, Wang YT (2013) Quinones derived from plant secondary metabolites as anti-cancer agents. Anti Cancer Agents Med Chem 13:456–463.  https://doi.org/10.2174/1871520611313030008 CrossRefGoogle Scholar
  81. Luciardi MC, Blazquez MA, Cartagena E, Bardon A, Arena ME (2016) Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa. LWT-Food Sci Technol 68:373–380.  https://doi.org/10.1016/j.lwt.2015.12.056 CrossRefGoogle Scholar
  82. Mahajan-miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96:47–56.  https://doi.org/10.1016/S0092-8674(00)80958-7 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Maisuria VB, de Los Santos YL, Tufenkji N, Deziel E (2016) Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci Rep 6:30169.  https://doi.org/10.1038/srep30169 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg S (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactones (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiol 145:283–291.  https://doi.org/10.1099/13500872-145-2-283 CrossRefGoogle Scholar
  85. Marin SD, Xu Y, Meijler MM, Janda KD (2007) Antibody catalyzed hydrolysis of a quorum sensing signal found in Gram-negative bacteria. Bioorg Med Chem Lett 17:1549–1552.  https://doi.org/10.1016/j.bmcl.2006.12.118 CrossRefGoogle Scholar
  86. Micek ST, Lioyd AE, Ritchie DJ, Reichley RM, Fraser VJ, Koller MH (2005) Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob Agents Chemother 49:1306–1311.  https://doi.org/10.1128/AAC.49.4.1306-1311.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Miyashiro T, Ruby EG (2012) Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol 84:795–806.  https://doi.org/10.1111/j.1365-2958.2012.08065.x CrossRefPubMedPubMedCentralGoogle Scholar
  88. Moghaddam MM, Khodi S, Mirhosseini A (2014) Quorum sensing in bacteria and a glance on Pseudomonas aeruginosa. Clin Microbial 3:4.  https://doi.org/10.4172/2327-5073.1000156 CrossRefGoogle Scholar
  89. Morita Y, Tomida J, Kawamura Y (2013) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422.  https://doi.org/10.3389/fmicb.2013.00422 CrossRefGoogle Scholar
  90. Moya B, Dotsch A, Juan C, Blazquez J, Zamorana L, Haussler S, Oliver A (2009) β-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog 5:e1000353.  https://doi.org/10.1371/journal.ppat.1000353 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Murugan K, Selvanayaki K, Sohaibani SAI (2011) Antibiofilm activity of Andrographis paniculata against cystic fibrosis clinical isolates Pseudomonas aeruginosa. World J Microbiol Biotechnol 27:1661–1668.  https://doi.org/10.1007/s11274-010-0620-3 CrossRefGoogle Scholar
  92. Mustafa KS, Balamurugan K, Pandian SK, Ravi AV (2012a) 2,5-piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1. J Basic Microbiol 52:1–8.  https://doi.org/10.1002/jobm.201100292 CrossRefGoogle Scholar
  93. Mustafa KS, Sivamaruthi BS, Pandian SK, Ravi AV (2012b) Quorum sensing inhibition in Pseudomonas aeruginosa PAO1 by antagonistic compound phenylacetic acid. Curr Microbiol 65:475–480.  https://doi.org/10.1007/s00284-012-0181-9 CrossRefGoogle Scholar
  94. Musthafa KS, Ravi AV, Annapoorani A, Packiavathy ISV, Pandian S (2010) Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy 56:333–339.  https://doi.org/10.1159/000320185 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Nau R, Eiffert H (2002) Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin Microbiol Rev 15:95–110.  https://doi.org/10.1128/CMR.15.1.95-110.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent. J Bacteriol 104:313–322PubMedPubMedCentralGoogle Scholar
  97. Ng W-L, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222.  https://doi.org/10.1146/annurev-genet-102108-134304 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ni N, Choudhary G, Li M, Wang B (2008) Pyrogallol and analogs can antagonize bacterial quorum sensing in Vibrio harveyi. Bioorg Med Chemist Lett 18:1567–1572.  https://doi.org/10.1016/j.bmcl.2008.01.081 CrossRefGoogle Scholar
  99. Nicolle LE (2014) Catheter associated urinary tract infections. Antimicrob Resist Infect Control 3:23.  https://doi.org/10.1186/2047-2994-3-23 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Nikaido H (2010) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146.  https://doi.org/10.1146/annurev.biochem.78.082907.145923 CrossRefGoogle Scholar
  101. Niu C, Afre Gilbert ES (2006) Sub-inhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43:489–494.  https://doi.org/10.1111/j.1472-765X.2006.02001.x CrossRefPubMedPubMedCentralGoogle Scholar
  102. Orgad O, Oren Y, Walker SL, Herzberg M (2011) The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment. Biofouling 27:787–798.  https://doi.org/10.1080/08927014.2011.603145 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Pamp SJ, Nielson TT (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189:2531–2539.  https://doi.org/10.1128/JB.01515-06 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Park J, Kaufmann GF, Bowen JP, Arbiser L, Janda KD (2008) Solenopsin A, a venom alkaloid from the fire ant Solenopsis invicta, inhibits quorum-sensing signaling in Pseudomonas aeruginosa. J Infect Dis 198:1198–1201.  https://doi.org/10.1086/591916 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91:197–201CrossRefPubMedCentralPubMedGoogle Scholar
  106. Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:1490–1494.  https://doi.org/10.1073/pnas.92.5.1490 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pearson JP, Pesci EC, Iglewski BH (1997) Role of Pseudomonas aeruginosa las and rhl quorum sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767CrossRefPubMedCentralPubMedGoogle Scholar
  108. Pejin B, Ciric A, Glamoclija J, Nikolic M, Sokovic M (2015) In vitro anti-quorum sensing activity of phytol. Nat Prod Res 29:374–377.  https://doi.org/10.1080/14786419.2014.945088 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132CrossRefPubMedCentralPubMedGoogle Scholar
  110. Peters L, Konig AD, Wright AD, Pukall R, Stackebrandt E, Eberl L (2003) Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl Environ Microbiol 69:3469–3475.  https://doi.org/10.1128/AEM.69.6.3469-3475.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Pimenta AL, Delatorre LDC, Mascarello A, Oliveira KAO, Leal PC, Yunes RA, Nedel CB, Aguiar M, Tasca CI, Nunes RJ, Smania AS Jr (2013) Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing. Int J Antimicrob Agents 42:519–523.  https://doi.org/10.1016/j.ijantimicag.2013.07.006 CrossRefGoogle Scholar
  112. Plyuta V, Zaitseva J, Lobakova E, Zagoskina N, Kuznetsov A, Khml I (2013) Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS 121:1073–1081.  https://doi.org/10.1111/apm.12083 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Qu L, She P, Wang Y, Liu F, Zhang D, Chen L, Luo Z, Xu H, Qi Y, Wu Y (2016) Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiology 5:402–412.  https://doi.org/10.1002/mbo3.338 CrossRefGoogle Scholar
  114. Quintana J, Brango-Vanegas J, Costa GM, Castellanos L, Arevalo C, Duque C (2015) Marine organisms as source of extracts to disrupt bacterial communication: bioguided isolation and identification of quorum sensing inhibitors from Ircinia felix. Rev Bras Farmacogn 25:199–207.  https://doi.org/10.1016/j.bjp.2015.03.013 CrossRefGoogle Scholar
  115. Rada B, Leto TL (2013) Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol 21:73–81.  https://doi.org/10.1016/j.tim.2012.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Rajesh PS, Rai VR (2014) Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofiln in Pseudomonas aeruginosa PAO1. Microbiol Res 169:561–569.  https://doi.org/10.1016/j.micres.2013.10.005 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Ramsamiravaka T, Labtani Q, Duez P, Jaziri MEI (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:1–17.  https://doi.org/10.1155/2015/759348 CrossRefGoogle Scholar
  118. Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904.  https://doi.org/10.1099/mic.0.28601-0 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Rasmussen TB, Manefield M, Andersen JB, Ebert L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000) How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146:3237–3244.  https://doi.org/10.1099/00221287-146-12-3237 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D (1997) The global activator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319.  https://doi.org/10.1046/j.1365-2958.1997.3291701.x CrossRefPubMedPubMedCentralGoogle Scholar
  121. Ribert D, Cossart P (2015) How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 17:173–183.  https://doi.org/10.1016/j.micinf.2015.01.004 CrossRefGoogle Scholar
  122. Rogers SA, Huigens RW, Cavanagh J, Melander C (2010) Synergetic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 54:2112–2118.  https://doi.org/10.1128/AAC.01418-09 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Ruppe E, Woerther PL, Barbier F (2015) Mechanisms of antimicrobial resistance in gram-negative bacilli. Ann Intensive Care 5:21.  https://doi.org/10.1186/s13613-015-0061-0 CrossRefPubMedCentralGoogle Scholar
  124. Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opinion Microbiol 10:644–648CrossRefGoogle Scholar
  125. Sadikot RT, Blackwell TS, Christman JW, Prince AS (2005) Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 17:1209–1223.  https://doi.org/10.1164/rccm.200408-1044SO CrossRefGoogle Scholar
  126. Sarabhai S, Sharma P, Capalash N (2013) Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8:e53441.  https://doi.org/10.1371/journal.pone.0053441 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Sawa T, Ohara M, Kurahashi K, Twining SS, Frank DW, Doroques DB, Long T, Michael A, Wiener-kronish JP, Gropper MA (1998) In vitro cellular toxicity predicts Pseudomonas aeruginosa virulence in lung infections. Infect Immun 66:3242–3249PubMedPubMedCentralGoogle Scholar
  128. Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81.  https://doi.org/10.1016/j.ijmm.2006.01.036 CrossRefPubMedGoogle Scholar
  129. Sepahi E, Tarighi S, Ahmadi FS, Bagheri A (2015) Inhibition of quorum sensing in Pseudomonas aeruginosa by two herbal essential oils from Apiaceae family. J Microbiol 53:176–180.  https://doi.org/10.1007/s12275-015-4203-8 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA (2015) Antibiotic resistance and extended spectrum beta-lactamases: types, epidemiology and treatment. Saudi J Biol Sci 22:90–101.  https://doi.org/10.1016/j.sjbs.2014.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Singh BN, Singh BR, Singh RL, Prakash D, Dhakarey R, Upadhyay G, Singh HB (2009) Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem Toxicol 47:1109–1116.  https://doi.org/10.1016/j.fct.2009.01.034 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Skindersoe ME, Epstein PE, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol 10:56–63.  https://doi.org/10.1007/s10126-007-9036-y CrossRefPubMedPubMedCentralGoogle Scholar
  133. Slobodnikova L, Fialova S, Rendekova K, Kovac J, Mucaji P (2016) Antibiofilm activity of plants polyphenols. Molecules 21:1717.  https://doi.org/10.3390/molecules21121717 CrossRefGoogle Scholar
  134. Smith RS, Iglewski BH (2003) Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 112:1460–1465.  https://doi.org/10.1172/JCI20364 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Sperandio V, Torres AG, Kaper JB (2002) Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821.  https://doi.org/10.1046/j.1365-2958.2002.02803.x CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sterrett FS (1962) The nature of essential oils.11. Chemical constituents, analysis. J Chem Edu 39:246–251CrossRefGoogle Scholar
  137. Sun J, Deng Z, Yen A (2015) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267.  https://doi.org/10.1016/j.bbrc.2014.05.090 CrossRefGoogle Scholar
  138. Taganna JC, Quanico JP, Perono RMG, Amor EC, Rivera WL (2011) Tannin-rich fraction from Terminalia catappa inhibits quorum sensing (QS) in Chromobacterium violaceum and the QS-controlled biofilm maturation and LasA staphylolytic activity in Pseudomonas aeruginosa. J Ethanopharmocol 134:865–871.  https://doi.org/10.1016/j.jep.2011.01.028 CrossRefGoogle Scholar
  139. Tateda K, Comte R, Pechere J-C, Köhler T, Yamaguchi K, van Delden C (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45:1930–1933.  https://doi.org/10.1128/AAC.45.6.1930-1933.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 119:3–10.  https://doi.org/10.1016/j.ajic.2006.05.219 CrossRefGoogle Scholar
  141. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl-homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–646.  https://doi.org/10.1094/MPMI.2000.13.6.637 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Teplitski M, Mathesius U, Rumbaugh KP (2011) Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111:100–116.  https://doi.org/10.1021/cr100045m CrossRefPubMedPubMedCentralGoogle Scholar
  143. Truchado P, Larrosa M, Castro-Ibanez I, Allende A (2015) Plant food extracts and phytochemicals: Their role as quorum sensing inhibitors. Trends Food Sci Technol 43:189–204.  https://doi.org/10.1016/j.tifs.2015.02.009 CrossRefGoogle Scholar
  144. Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Sci Food Saf 12:40–53.  https://doi.org/10.1111/1541-4337.12006 CrossRefGoogle Scholar
  145. Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560.  https://doi.org/10.3201/eid0404.980405 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Vasavi HS, Arun AB, Rekha PD (2016) Anti-quorum sensing activity of flavonoid-rich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO1. J Microbiol Immunol Infect 49:8–15.  https://doi.org/10.1016/j.jmii.2014.03.012 CrossRefPubMedGoogle Scholar
  147. Vattem DA, Mihali KK, Crixell SH, Mclean RJ (2007) Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78:302–310.  https://doi.org/10.1016/j.fitote.2007.03.009. 10.1016/S1359-6446(97)01167-7CrossRefPubMedPubMedCentralGoogle Scholar
  148. Verpoorte R (1998) Exploration of natures chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov Today 3:232–238.  https://doi.org/10.1016/S1359-6446(97)01167-7 CrossRefGoogle Scholar
  149. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilms formation. Molecules 14:2535–2554.  https://doi.org/10.3390/molecules14072535 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380.  https://doi.org/10.1128/JB.187.13.4372-4380.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, Titz A (2016) Novel strategies for the treatment of Pseudomonas aeruginosa infections. J Med Chem 59:5929–5969.  https://doi.org/10.1021/acs.jmedchem.5b01698 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa –plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331.  https://doi.org/10.1104/pp.103.027888 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Wallace RJ (2004) Antimicrobial properties of secondary metabolites. Proc Nutr Soc 63:621–629.  https://doi.org/10.1079/PNS2004393 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G Liu H, Ma LZ (2014) Coordination of swarming motility, biosurfactant synthesis, and biofilms matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 80:6724–6732.  https://doi.org/10.1128/AEM.01237-14 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Water CM, Bassler BL (2006) The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev 20:2754–2767.  https://doi.org/10.1101/gad.1466506 CrossRefGoogle Scholar
  156. Wolter DJ, Black JA, Liter PD, Hanson ND (2009) Multiple genotypic changes in hyper susceptible strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients do not always correlate with the phenotype. J Antimicrob Chemother 64:294–300.  https://doi.org/10.1093/jac/dkp185 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N (2004) Synthetic furanones inhibit quorum –sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection mice. J Antimicrob Chemother 53:1054–1061.  https://doi.org/10.1093/jac/dkh223 CrossRefPubMedGoogle Scholar
  158. Yan M, Zhu Y, Zhang HJ, Jiao WH, Han BN, Liu ZX, Qiu F, Chen WS, Lin HW (2013) Anti-inflammatory secondary metabolites from the leaves of Rosa laevigata. Bioorg Med Chem 21:3290–3297.  https://doi.org/10.1016/j.bmc.2013.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Yu CW, Li WH, Hsu FL, Yen PL, Chang ST, Liao VH (2014) Essential oil alloaromadendrene from mixed –type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans. J Agric Food Chem 62:6159–6165.  https://doi.org/10.1021/jf500417y CrossRefPubMedPubMedCentralGoogle Scholar
  160. Zahin M, Hasan S, Aqil F, Khan MSA, Husain FM, Ahmad I (2010) Screening of certain medicinal plants from India for their anti-quorum sensing activity. Indian J Exp Biol 48:1219–1224PubMedPubMedCentralGoogle Scholar
  161. Zawacki A, O’Rourke E, Potter-Bynoe G, Macone A, Harbarth S, Goldmann D (2004) An outbreak of Pseudomonas aeruginosa pneumonia and bloodstream infection associated with intermittent Otitis externa in a healthcare worker. Infect Control Hosp Epidemiol 25:1083–1089.  https://doi.org/10.1086/502348 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Zeng Z, Qian L, Cao L, Tan H, Huang Y, Xue X, Shen Y, Zhou S (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 79:119–126.  https://doi.org/10.1007/s00253-008-1406-5 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Zhou L, Zheng H, Tang Y, Yu W, Gong Q (2013) Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 35:631–637.  https://doi.org/10.1007/s10529-012-1126-x CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. Sankar Ganesh
    • 1
  • V. Ravishankar Rai
    • 1
  1. 1.Department of Studies in MicrobiologyUniversity of MysoreMysoreIndia

Personalised recommendations