Advertisement

Quorum Sensing in Phytopathogenic Bacteria and Its Relevance in Plant Health

  • Firoz Ahmad Ansari
  • Iqbal Ahmad
Chapter

Abstract

Bacteria can regulate expression of certain genes through quorum sensing (QS), a cell density dependent communication system. The signal molecules up-regulate their own synthesis and hence act as auto-inducers. Most of well characterized phytopathogenic bacteria depend on this communication system for virulence and pathogenicity. Although pathogenesis is a multifactorial phenomenon but expression of virulence factors regulated by QS is a perquisite to cause infection. Majority of phytopathogenic bacteria are Gram negative and their signal molecules and QS systems are fairly investigated. Increased understanding on gene expression of QS regulated virulence functions has led to development of QS-disrupting strategies to fight bacterial plant diseases. Although success in vivo achieved in combating bacterial diseases are varied but encouraging. In this particular chapter, the role of QS in mediating virulence factors and pathogenicity among important phyto-pathogenic bacteria are reviewed and summaries various strategies of QS-disruption of plant pathogens to protect plant health.

Keywords

Quorum sensing Signal molecules Phytopathogenic bacteria Virulence factors QS interference Transgenic plant Plant health 

Notes

Acknowledgement

One of the author Mr. Firoz Ahmad Ansari is thankful to University Grant Commission, New Delhi for providing Maulana Azad National Fellowship (MAN-JRF) for pursuing PhD at Aligarh Muslim University.

References

  1. Amara N, Krom BP, Kaufmann GF, Meijler MM (2011) Macromolecular inhibition of quorum sensing: enzymes, antibodies, and beyond. Biomed Eng (NY) 111:195–208.  https://doi.org/10.1021/cr100101c CrossRefGoogle Scholar
  2. An SQ, Allan JH, McCarthy Y, Febrer M, Dow JM, Ryan RP (2014) The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of Xanthomonas campestris. Mol Microbiol 923:586–597.  https://doi.org/10.1111/mmi.12577 CrossRefGoogle Scholar
  3. Andersen AS, Joergensen B, Bjarnsholt T, Johansen H, Karlsmark T, Givskov M, Krogfelt KA (2010) Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots. Microbiology 156:400–407.  https://doi.org/10.1099/mic.0.032730-0 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85.  https://doi.org/10.4161/psb.7.1.18418 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ban H, Chai X, Lin Y, Zhou Y, Peng D, Zou Y, Yu Z, Sun M (2009) Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Rep 28:1847–1855.  https://doi.org/10.1007/s00299-009-0788-x CrossRefPubMedGoogle Scholar
  6. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2013) Microbial interactions in the rhizosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley, Hoboken, pp 29–44.  https://doi.org/10.4067/S0718-95162015005000021 CrossRefGoogle Scholar
  7. Barnard AML, Salmond GPC (2007) Quorum sensing in Erwinia species. Anal Bioanal Chem 387:415–423.  https://doi.org/10.1007/s00216-006-0701-1 CrossRefPubMedGoogle Scholar
  8. Barras F, Vangijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot erwinia. Annu Rev Phytopathol 32:201–234.  https://doi.org/10.1146/annurev.py.32.090194.001221 CrossRefGoogle Scholar
  9. Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433.  https://doi.org/10.1016/j.pbi.2004.05.008 CrossRefPubMedGoogle Scholar
  10. Blom D, Fabbri C, Connor E, Schiestl F, Klauser D, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058.  https://doi.org/10.1111/j.1462-2920.2011.02582.x CrossRefPubMedGoogle Scholar
  11. Bocsanczy AM, Nissinen R, OH CS, Beer SV (2008) HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol Plant Pathol 94:425–434.  https://doi.org/10.1111/j.1364-3703.2008.00471.x CrossRefGoogle Scholar
  12. Burt SA, Ojo-Fakunle VT, Woertman J, Veldhuizen EJ (2014) The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 9(4):e93414CrossRefPubMedPubMedCentralGoogle Scholar
  13. Büttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 342:107–133.  https://doi.org/10.1111/j.1574-6976.2009.00192.x CrossRefGoogle Scholar
  14. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum sensing signal containing boron. Nature 415:545–549.  https://doi.org/10.1038/415545a CrossRefPubMedGoogle Scholar
  15. Chen CN, Chen CJ, Liao CT, Lee CY (2009) A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 9(1):89.  https://doi.org/10.1186/1471-2180-9-89 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cheng H et al (2016) The F-box protein Rcy1 is involved in the degradation of histone H3 variant Cse4 and genome maintenance. J Biol Chem 291(19):10372–10377CrossRefPubMedGoogle Scholar
  17. Chernin L (2011) Quorum-sensing signals as mediators of PGPRs’ beneficial traits. In: Maheshwari DK (ed) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin/Heidelberg, pp 209–236.  https://doi.org/10.1007/978-3-642-21061-7 CrossRefGoogle Scholar
  18. Cho HS, Lee JH, Ryu SY, Joo SW, Cho MH, Lee J (2013) Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J Agric Food Chem 61:7120–7126.  https://doi.org/10.1021/jf4009313 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chong YM, Yin WF, Ho CY, Mustafa MR, Hadi AH, Awang K, Narrima P, Koh CL, Appleton DR, Chan KG (2011) Malabaricone C from myristica cinnamomea exhibits anti-quorum sensing activity. J Nat Prod 74:2261–2264.  https://doi.org/10.1021/np100872k CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cirou A, Mondy S, An S, Charrier A, Sarrazin A, Thoison O, DuBow M, Faure D (2012) Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 78:481–492.  https://doi.org/10.1128/AEM.06159-11 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Corbett M, Virtue S, Bell K, Birch P, Burr T, Hyman L, Lilley K, Poock S, Toth I, Salmond G (2005) Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant-Microbe Interact 18:334–342.  https://doi.org/10.1094/MPMI-18-0334 CrossRefPubMedGoogle Scholar
  22. Costa ED, Chai Y, Winans SC (2012) The quorum-sensing protein TraR of Agrobacterium tumefaciens is susceptible to intrinsic and TraM-mediated proteolytic instability. Mol Microbiol 84:807–815.  https://doi.org/10.1111/j.1365-2958.2012.08037.x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Crépin A, Beury-Cirou A, Barbey C, Farmer C, Hélias V, Burini JF, Faure D, Latour X (2012) N-acyl homoserine lactones in diverse Pectobacterium and Dickeya plant pathogens: diversity, abundance, and involvement in virulence. Sensors (Basel) 12:3484–3497.  https://doi.org/10.3390/s120303484 CrossRefGoogle Scholar
  24. Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Szegedi E, Khmel I, Vainstein A, Chernin L (2010a) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress agrobacterium crown-gall tumors on tomato plants. J Appl Microbiol 110:341–352.  https://doi.org/10.1111/j.1365-2672.2010.04891.x CrossRefPubMedGoogle Scholar
  25. Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R, Tediashvili M, Szegedi E, Khmel I, Vainstein A, Chernin L (2010b) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown-gall tumors on tomato plants. J Appl Microbiol 110:341–352.  https://doi.org/10.1111/j.1365-2672.2010.04891.x CrossRefPubMedGoogle Scholar
  26. Davidsson PR, Kariola T, Niemi O, Palva ET (2013) Pathogenicity of and plant immunity to soft rot pectobacteria. Front Plant Sci 4:191.  https://doi.org/10.3389/fpls.2013.00191 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Delalande L, Faure D, Raffoux A, Uroz S, D’Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y (2005) N-Hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits a plant-dependent stability in the rhizosphere and may be inactivated by germinating lotus corniculatus seedlings. FEMS Microbiol Ecol 52:13–20.  https://doi.org/10.1016/j.femsec.2004.10.005 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Evans TJ, Perez-Mendoza D, Monson R, Stickland HG, Salmond GPC (2009) Secretion systems of the enterobacterial phytopathogen, erwinia. In: Wooldridge K (ed) Bacterial secreted proteins. Caister Academic Press, Norfolk, pp 479–503Google Scholar
  29. Farag MA, Zhang H, Choong-Min Ryu CM (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39:1007–1018.  https://doi.org/10.1007/s10886-013-0317-9 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol Ecol 72:22–34.  https://doi.org/10.1111/j.1574-6941.2009.00828.x CrossRefPubMedGoogle Scholar
  31. Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3 hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259.  https://doi.org/10.1046/j.1365-2958.1997.5661945.x CrossRefPubMedGoogle Scholar
  32. Fuqua C, Parsek MR, Peter Greenberg E (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 351:439–468.  https://doi.org/10.1146/annurev.genet.35.102401.090913 CrossRefGoogle Scholar
  33. Ganin H, Rayo J, Amara N, Levy N, Pnina Krief P, Meijler MM (2013) Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. Med Chem Commun 4:175–179.  https://doi.org/10.1039/C2MD20196H CrossRefGoogle Scholar
  34. Gao R, Krysciak D, Petersen K, Utpatel C, Knapp A, Schmeisser C, Daniel R, Voget S, Jaeger KE, Streit WR (2015) Genome-wide RNA sequencing analysis of quorum sensing-controlled regulons in the plant-associated Burkholderia glumae PG1 strain. Appl Environ Microbiol 81(23):7993–8007CrossRefPubMedPubMedCentralGoogle Scholar
  35. Garge SS, Nerurkar AS (2016) Attenuation of quorum sensing regulated virulence of Pectobacterium carotovorum subsp. carotovorum through an AHL lactonase produced by Lysinibacillus sp. Gs50. PLoS One 11:167–344.  https://doi.org/10.1371/journal.pone.0167344 CrossRefGoogle Scholar
  36. Gelencser Z, Choudhary KS, Coutinho BG, Hudaiberdiev S, Galbats B, Venturi V (2012) Classifying the topology of AHL-driven quorum sensing circuits in proteobacterial genomes. Sensors 12:5432–5444.  https://doi.org/10.3390/s120505432 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89.  https://doi.org/10.1146/annurev-phyto-081211-173000 CrossRefPubMedGoogle Scholar
  38. Gohlke J, Deeken R (2014) Plant responses to Agrobacterium tumefaciens and crown gall development. Front Plant Sci 5:155.  https://doi.org/10.3389/fpls.2014.00155 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Götz C, Fekete A, Gebefuegi I, Forczek ST, Fuksova K, Li X, Englmann M, Gryndler M, Hartmann A, Matucha M, Schmitt-Kopplin P, Schroder P (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457. Not availableCrossRefPubMedGoogle Scholar
  40. Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D (2015) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 401:86–116.  https://doi.org/10.1093/femsre/fuv038 CrossRefGoogle Scholar
  41. Groenhagen U, Baumgartner R, Baily A, Gardiner A, Eberl L, Schulz S, Weisskopf L (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906.  https://doi.org/10.1007/s10886-013-0315-y CrossRefPubMedGoogle Scholar
  42. Ham JH (2013) Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. Mol Plant Pathol 14:308–322.  https://doi.org/10.1111/mpp.12005 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Han Y, Chen F, Li N, Zhu B, Li XZ (2010) Bacillus marcorestinctum sp nov., a novel soil acylhomoserine lactone quorum-sensing signal quenching bacterium. Int J Mol Sci 11:507–520.  https://doi.org/10.3390/ijms11020507 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Han SW, Sriariyanun M, Lee SW, Sharma M, Bahar O, Bower Z, Ronald PC (2011) Small protein-mediated quorum sensing in a gram-negative bacterium. PLoS One 6(12):e29192.  https://doi.org/10.1371/journal.pone.0029192 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hanano A, Harba M, Al-Ali M, Ammouneh H (2014) Silencing of Erwinia amylovora sy69 AHL-quorum sensing by a bacillus simplex AHL-inducible aiiA gene encoding a zinc-dependent N-acyl-homoserine lactonase. Plant Pathol 634:773–783.  https://doi.org/10.1111/ppa.12142 CrossRefGoogle Scholar
  46. Haudecoeur E, Tannières M, Cirou A, Raffoux A, Dessaux Y, Faure D (2009) Different regulation and roles of lactonases AiiB and AttM in Agrobacterium tumefaciens C58. Mol Plant-Microbe Interact 22:529–537.  https://doi.org/10.1094/MPMI-22-5-0529 CrossRefPubMedGoogle Scholar
  47. Hayward AC, Fegan N, Fegan M, Stirling GR (2010) Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 108:756–770.  https://doi.org/10.1111/j.1365-2672.2009.04471.x CrossRefPubMedGoogle Scholar
  48. He YW, Wu J, Zhou L, Yang F, He YQ, Jiang BL, Bai L, Xu Y, Deng Z, Tang JL, Zhang LH (2011) Xanthomonas campestris diffusible factor is 3-hydroxybenzoic acid and is associated with xanthomonadin biosynthesis, cell viability, antioxidant activity, and systemic invasion. Mol Plant-Microbe Interact 24:948–957.  https://doi.org/10.1094/MPMI-02-11-0031 CrossRefPubMedGoogle Scholar
  49. Holden MTG, Ram Chhabra S, De Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GPC, Stewart GSAB, Bycroft BW, Kjelleberg S, Williams P (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266.  https://doi.org/10.1046/j.13652958.1999.01577.x CrossRefPubMedGoogle Scholar
  50. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120.  https://doi.org/10.1038/nrmicro1836 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hussain MBBM, Zhang HB, Xu JL, Liu QG, Jiang Z, Zhang LH (2008) The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. J Bacteriol 190:1045–1053.  https://doi.org/10.1128/JB.01472-07 CrossRefPubMedGoogle Scholar
  52. Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213. Not availableCrossRefGoogle Scholar
  53. Ionescu M, Zaini PA, Baccari C, Tran S, da Silva AM, Lindow SE (2014) Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces. Proc Natl Acad Sci 111(37):E3910–E3918CrossRefGoogle Scholar
  54. Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M, Alhede M, Skindersoe M, Larsen TO, Hoiby N, Bjarnsholt T, Givskov M (2012a) Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 78:2410–2421.  https://doi.org/10.1128/AEM.05992-11 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PO, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Hoiby N, Bjarnsholt T, Givskov M (2012b) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 56:2314–2325.  https://doi.org/10.1128/AAC.05919-11 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Jaramillo-Colorado B, Olivero-Verbel J, Stashenko EE, Wagner-Döbler I, Kunze B (2012) Anti-quorum sensing activity of essential oils from Colombian plants. Nat Prod Res 26(12):1075–1086.  https://doi.org/10.1080/14786419.2011.557376 CrossRefPubMedGoogle Scholar
  57. Kai K, Ohnishi H, Shimatani M, Ishikawa S, Mori Y, Kiba A, Ohnishi K, Tabuchi M, Hikichi Y (2015) Methyl 3-hydroxymyristate, a diffusible signal mediating phc quorum sensing in Ralstonia solanacearum. Chem Bio Chem 16:2309–2318.  https://doi.org/10.1002/cbic.201500456 CrossRefPubMedGoogle Scholar
  58. Kakkar A, Nizampatnam NR, Kondreddy A, Pradhan BB, Chatterjee S (2015) Xanthomonas campestris cell–cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J Exp Bot 66(21):6697–6714CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kang BR, Lee JH, Ko SJ, Lee YH, Cha JS, Cho BH, Kim YC (2004) Degradation of acyl-homoserine lactone molecules by Acinetobacter sp. strain C1010. Can J Microbiol 50:935–941.  https://doi.org/10.1139/w04-083 CrossRefPubMedGoogle Scholar
  60. Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427–8436.  https://doi.org/10.1128/JB.187.24.8427-8436 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kleerebezem M, Quadri LEN, Kuipers OP, De Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Mol Microbiol 24:895–904.  https://doi.org/10.1046/j.1365-2958.1997.4251782 CrossRefPubMedGoogle Scholar
  62. Koczan JM, McGrath MJ, Zhao Y, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244.  https://doi.org/10.1094/PHYTO-99-11-1237 CrossRefPubMedGoogle Scholar
  63. Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci 103(15):5983–5988CrossRefGoogle Scholar
  64. Kyung KH, Lee YC (2001) Antimicrobial activities of sulfur compounds derived from S-alk (en) yl-L-cysteine sulfoxides in Allium and Brassica. Food Rev Int 17:183–198.  https://doi.org/10.1081/FRI-100000268 CrossRefGoogle Scholar
  65. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 771:73–111.  https://doi.org/10.1128/MMBR.00046-12 CrossRefGoogle Scholar
  66. Li Q, Ni H, Meng S, He Y, Yu Z, Li L (2011) Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells. J Microbiol Biotechnol 21:1330–1335. Not availableCrossRefPubMedGoogle Scholar
  67. Lin Y, Xu J, Hu J, Wang L, Ong SL, Leadbetter JR (2003) Acyl homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum quenching enzymes. Mol Microbiol 47:849–860.  https://doi.org/10.1046/j.1365-2958.2003.03351.x CrossRefPubMedPubMedCentralGoogle Scholar
  68. Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg MB, Birch PRJ, Salmond GPC, Toth IK (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog 4:e1000093.  https://doi.org/10.1371/journal.ppat.1000093 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Mandabi A, Ganin H, Krief P, Rayo J, Meijler MM (2014) Karrikins from plant smoke modulate bacterial quorum sensing. Chem Commun 50:5322–5325.  https://doi.org/10.1039/C3CC47501H CrossRefGoogle Scholar
  70. Mei GY, Yan XX, Turak A, Luo ZQ, Zhang LQ (2010) AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol 76:4933–4942.  https://doi.org/10.1128/AEM.00477-10 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663.  https://doi.org/10.1111/1574-6976.12028 CrossRefPubMedGoogle Scholar
  72. Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Defago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81.  https://doi.org/10.1016/s0168-6496 CrossRefPubMedGoogle Scholar
  73. Mori Y, Ishikawa S, Ohnishi H, Shimatani M, Morikawa Y, Hayashi K, Ohnishi K, Kiba A, Kai K, Hikichi Y (2017) Involvement of ralfuranones in the quorum sensing signalling pathway and virulence of Ralstonia solanacearum strain OE1-1. Mol Plant Pathol 19:454.  https://doi.org/10.1111/mpp.12537 CrossRefPubMedGoogle Scholar
  74. Mukherjee A, Cui Y, Liu Y, Chatterjee AK (1997) Molecular characterization and expression of the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive reaction. Mol Plant-Microbe Interact 10:462–471.  https://doi.org/10.1094/MPMI.1997.10.4.462 CrossRefPubMedGoogle Scholar
  75. Müller H, Westendorf C, Leitner E, Chernin L, Riedel K, Eberl L, Berg G (2009) Quorum sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol 67:468–478.  https://doi.org/10.1111/j.1574-6941.2008.00635.x CrossRefPubMedGoogle Scholar
  76. Nasser W, Dorel C, Wawrzyniak J, Van Gijsegem F, Groleau MC, Déziel E, Reverchon S (2013) Vfm a new quorum sensing system controls the virulence of Dickeya dadantii. Environ Microbiol 15:865–880.  https://doi.org/10.1111/1462-2920.12049 CrossRefPubMedGoogle Scholar
  77. Ouyang LJ, Li LM (2016) Effects of an inducible aiiA. Trans Res 25(4):441–452.  https://doi.org/10.1007/s11248-016-9940-x CrossRefGoogle Scholar
  78. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol 149:576–588.  https://doi.org/10.1038/nrmicro.2016.89 CrossRefGoogle Scholar
  79. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:1541–1550.  https://doi.org/10.1099/mic.0.26269-0 CrossRefPubMedGoogle Scholar
  80. Park SY, Hwang BJ, Shin MH, Kim JA, Kim HK, Lee JK (2006) N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL degrading activities. FEMS Microbiol Lett 261:102–108.  https://doi.org/10.1111/j.1574-6968.2006.00336.x CrossRefPubMedGoogle Scholar
  81. Park CJ, Kazunari N, Ronald PC (2010) Quantitative measurements of Xanthomonas oryzae pv. oryzae distribution in rice using fluorescent-labelling. J Plant Biol 15:595–599.  https://doi.org/10.1007/s12374-011-9164-9 CrossRefGoogle Scholar
  82. Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37:156–181.  https://doi.org/10.1111/j.1574-6976.2012.00345.x CrossRefPubMedPubMedCentralGoogle Scholar
  83. Pérombelon MCM (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51:1–12.  https://doi.org/10.1046/j.0032-0862.2001.Shorttitle.doc.x CrossRefGoogle Scholar
  84. Pierce BK, Voegel T, Kirkpatrick BC (2014) The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles. PLoS One 9(11):e113504.  https://doi.org/10.1371/journal.pone.0113504 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Piqué N, Miñana-Galbis D, Merino S, Tomás JM (2015) Virulence factors of Erwinia amylovora: a review. Int J Mol Sci 16(6):12836–12854CrossRefPubMedPubMedCentralGoogle Scholar
  86. Põllumaa L, Alamäe T, Mäe A (2012) Quorum sensing and expression of virulence in pectobacteria. Sensors 12(3):3327–3349CrossRefPubMedGoogle Scholar
  87. Qian GL, Fan JQ, Chen DF, Kang YJ, Han B, Hu BS, Liu FQ (2010) Reducing pectobacterium virulence by expression of an N-acyl homoserine lactonase gene P-lpp-aiiA in Lysobacter enzymogenes strain OH11. Biol Control 52:17–23.  https://doi.org/10.1016/j.biocontrol.2009.05.007 CrossRefGoogle Scholar
  88. Qin Y, Su S, Farrand SK (2007) Molecular basis of transcriptional antiactivation. TraM disrupts the TraR–DNA complex through stepwise interactions. J Biol Chem 282:19979–19991.  https://doi.org/10.1074/jbc.M703332200 CrossRefPubMedGoogle Scholar
  89. Rai R, Ranjan M, Pradhan B, Chatterjee S (2012) Atypical regulation of virulence-associated functions by a diffusible signal factor in Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact 25:789–801.  https://doi.org/10.1094/MPMI-11-11-0285-R CrossRefPubMedGoogle Scholar
  90. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814.  https://doi.org/10.1128/JB.187.5.1799-1814.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rudrappa T, Bais HP (2008) Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal. J Agric Food Chem 56:1955–1962.  https://doi.org/10.1021/jf072591j CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858.  https://doi.org/10.1099/mic.0.2008/017871-0 CrossRefPubMedGoogle Scholar
  93. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842.  https://doi.org/10.1039/B507392H CrossRefPubMedGoogle Scholar
  94. Seet Q, Zhang LH (2011) Antiactivator QslA defines the quorum sensing threshold and response in Pseudomonas aeruginosa. Mol Microbiol 80:951–965.  https://doi.org/10.1111/j.1365-2958.2011.07622 CrossRefPubMedGoogle Scholar
  95. Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C (2006) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8(6):923–938CrossRefPubMedGoogle Scholar
  96. Takano E (2006) Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294.  https://doi.org/10.1016/j.mib.2006.04.003 CrossRefPubMedGoogle Scholar
  97. Tannières M, Lang J, Barnier C, Shykoff JA, Faure D (2017) Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders. Sci Rep 7:40126CrossRefPubMedPubMedCentralGoogle Scholar
  98. Teplitski M, Mathesius U, Rumbaugh KP (2011) Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111:100–116.  https://doi.org/10.1021/cr100045m CrossRefPubMedPubMedCentralGoogle Scholar
  99. Terwagne M, Mirabella A, Lemaire J, Deschamps C, De Bolle X, Letesson JJ (2013) Quorum sensing and self-quorum quenching in the intracellular pathogen Brucella melitensis. PLoS One 8(12):e8251482.  https://doi.org/10.1371/journal.pone.0082514 CrossRefGoogle Scholar
  100. Torres M, Uroz S, Rafael S, Laure F, Emilia Q, Inmaculada L (2017) HqiA, a novel quorum-quenching enzyme which expands the AHL lactonase family. Sci Rep 7(1):943.  https://doi.org/10.1038/s41598-017-01176-7 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Toth IK, Bell K, Holeva MC, Birch PRJ (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30.  https://doi.org/10.1046/j.1364-3703.2003.00149.x CrossRefPubMedGoogle Scholar
  102. Toth IK, Newton JA, Hyman LJ, Lees AK, Daykin M, Williams P, Fray RJ (2004) Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot erwiniae. Mol Plant-Microbe Interact 17:880–888.  https://doi.org/10.1094/MPMI.2004.17.8.880 CrossRefPubMedGoogle Scholar
  103. Truchado P, Gimenez-Bastida JA, Larrosa M, Castro-Ibanez I, Espin JC, Tomas-Barberan FA, Garcia-Conesa MT, Allende A (2012) Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J Agric Food Chem 60:8885–8894.  https://doi.org/10.1021/jf301365a CrossRefPubMedPubMedCentralGoogle Scholar
  104. Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing regulated functions of plant-pathogenic bacteria. Microbiology 149:1981–1989.  https://doi.org/10.1099/mic.0.26375-0 CrossRefPubMedGoogle Scholar
  105. Vakulskas CA, Potts AH, Babitzke P, Ahmer BM, Romeo T (2015) Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 792:193–224.  https://doi.org/10.1128/MMBR.00052-14 CrossRefGoogle Scholar
  106. Valente RS, Xavier KB (2015) The Trk potassium transporter is required for RsmB-mediated activation of virulence in the phytopathogen Pectobacterium wasabiae. J Bacteriol 198:248–255.  https://doi.org/10.1128/JB.00569-15 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Valente RS, Nadal-Jimenez P, Carvalho AFP, Vieira FJD, Xavier KB (2017) Signal integration in quorum sensing enables crossspecies induction of virulence in Pectobacterium wasabiae. mBio 8:398–417.  https://doi.org/10.1128/mBio.00398-17 CrossRefGoogle Scholar
  108. Vanneste JL (2000) In: Vanneste JL (ed) What is fire blight? Who is Erwinia amylovora? how to control it? In: Fire Flight; The Disease and its Causative Agent Erwinia amylovora. CAB International London, London, pp 01–08.  https://doi.org/10.1079/9780851992945.0000 CrossRefGoogle Scholar
  109. Vasavi HS, Arun AB, Rekha PD (2014) Anti‐quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol 58(5):286–293CrossRefPubMedGoogle Scholar
  110. Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109:515–527.  https://doi.org/10.1111/j.1365-2672.2010.04677.x CrossRefPubMedPubMedCentralGoogle Scholar
  111. Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosaplant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134(1):320–331CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wang WZ, Morohoshi T, Someya N, Ikeda T (2012) Diversity and distribution of N acylhomoserine lactone (AHL)-degrading activity and AHL-lactonase (AiiM) in genus microbacterium. Microbes Environ 27:330–333.  https://doi.org/10.1264/jsme2.ME11341 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506.  https://doi.org/10.1007/s00425-009-1076-2 CrossRefPubMedGoogle Scholar
  114. Whitehead NA, Byers JT, Commander P, Corbett MJ, Coulthurst SJ, Everson L, Harris AKP, Pemberton CL, Simpson NJL, Slater H, Smith DS, Welch M, Williamson N, Salmond GPC (2002) The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie van Leeuwenhoek 81:223–231. doi: Not availableCrossRefPubMedGoogle Scholar
  115. Wu J, Jiao Z, Guo F, Chen L, Ding Z, Qiu Z (2016) Constitutive and secretory sxpression of the AiiA in Pichia pastoris inhibits Amorphophallus konjac Soft Rot Disease. Am J Mol Biol:602–679.  https://doi.org/10.4236/ajmb.2016.62009
  116. Yu X, Liang X, Liu K, Dong W, Wang J, Zhou MG (2015) The thiG gene is required for full virulence of Xanthomonas oryzae pv. oryzae by preventing cell aggregation. PLoS One 10(7):e0134237.  https://doi.org/10.1371/journal.pone.0134237 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zheng D, Yao X, Duan M, Luo Y, Liu B, Qi P, Ruan L (2016) Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression. Sci Rep 6:22–768.  https://doi.org/10.1038/srep22768 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Firoz Ahmad Ansari
    • 1
  • Iqbal Ahmad
    • 1
  1. 1.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations