Advertisement

Marine Biodiversity As a Resource for Bioactive Molecules As Inhibitors of Microbial Quorum Sensing Phenotypes

  • Faseela Hamza
  • Smita Zinjarde
Chapter

Abstract

The emergence of antibiotic resistant pathogenic strains is well documented and currently available drugs are becoming less effective in combating infections. In addition, pathogens often form biofilms as a survival strategy. This phenomenon is significant in aquaculture, industrial and environmental settings as well. In most pathogens, quorum sensing plays an important role in survival; development of virulence factors and in pathogenicity. An understanding of the molecular basis of this phenomenon has led to the development of new strategies for disease control and a search for molecules interfering with related processes. Marine environments are hotspots for biodiversity and various quorum sensing inhibitors (QSIs) have been reported from this habitat. This chapter describes the salient features of biosensor strains used for screening QSIs from the marine environment and details chemical structures of inhibitors derived from different marine organisms (bacteria, fungi, algae and invertebrates) in a classified manner. Different biotechnological applications of QSIs as antivirulence drugs, antibiofilm agents, antifouling compounds and their use in aquaculture practices have also been highlighted. QSIs may in the future may, to some extent, be useful as replacements for antibiotics.

Keywords

Quorum sensing inhibitors Marine Bacteria Fungi Algae Invertebrates 

References

  1. Abed RM, Dobretsov S, Al-Fori M, Gunasekera SP, Sudesh K, Paul VJ (2013) Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. J Indust Microbiol Biotechnol 40:759–772.  https://doi.org/10.1007/s10295-013-1276-4 CrossRefGoogle Scholar
  2. Agersø Y, Bruun MS, Dalsgaard I, Larsen JL (2007) Tetracycline resistance gene tet(E) is frequently occurring and present on large horizontally transferable plasmids in Aeromonas spp. from fish farms. Aquaculture 266:47–52.  https://doi.org/10.1016/j.aquaculture.2007.01.012 CrossRefGoogle Scholar
  3. Akinbowale OL, Peng H, Barton MD (2007) Diversity of tetracycline resistance genes in bacteria from aquaculture sources in Australia. J Appl Microbiol 103:2016–2025.  https://doi.org/10.1111/j.1365-2672.2007.03445.x CrossRefPubMedGoogle Scholar
  4. Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585.  https://doi.org/10.1128/AEM.67.2.575-585.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Annapoorani A, Jabbar AKKA, Musthafa SKS, Pandian SK, Ravi AV (2012) Inhibition of quorum sensing mediated virulence factors production in urinary pathogen Serratia marcescens PS1 by marine sponges. Indian J Microbiol 52:160–166.  https://doi.org/10.1007/s12088-012-0272-0 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arias CA, Murray BE (2008) Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti-Infect Ther 6:637–655.  https://doi.org/10.1586/14787210.6.5.637 CrossRefPubMedGoogle Scholar
  7. Bhargava N, Sharma P, Capalash N (2010) Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol 36:349–360.  https://doi.org/10.3109/1040841X.2010.512269 CrossRefPubMedGoogle Scholar
  8. Blunt JW, Copp BR, Keyzers RA, Munroa MH, Prinsepd MR (2016) Natural product reports. Nat Prod Rep 33:382–431.  https://doi.org/10.1039/c5np00156k CrossRefPubMedGoogle Scholar
  9. Cam DTV, Nhan DT, Ceuppens S, Hao NV, Dierckens K, Wille M, Sorgeloos P, Bossier P (2009a) Effect of N-acyl homoserine lactone-degrading enrichment cultures on Macrobrachium rosenbergii larviculture. Aquaculture 294:5–13.  https://doi.org/10.1016/j.aquaculture.2009.05.015 CrossRefGoogle Scholar
  10. Cam DTV, Hao NV, Dierckens K, Defoirdt T, Boon N, Sorgeloos P, Bossier P (2009b) Novel approach of using homoserine lactone degrading and poly-β-hydroxybutyrate accumulating bacteria to protect Artemia from the pathogenic effects of Vibrio harveyi. Aquaculture 291:23–30.  https://doi.org/10.1016/j.aquaculture.2009.03.009 CrossRefGoogle Scholar
  11. Chang H, Zhou J, Zhu X, Yu S, Chen L, Jin H, Cai Z (2017) Strain identification and quorum sensing inhibition characterization of marine-derived Rhizobium sp. NAO1. R Soc Open Sci 4:170025.  https://doi.org/10.1098/rsos.170025 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I, Williams P, Stewart GSAB (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180:4435–4441. doi: Not availablePubMedPubMedCentralGoogle Scholar
  13. Choi H, Mascuch SJ, Villa FA, Byrum T, Teasdale ME, Smith JE, Preskitt LB, Rowley DC, Gerwick L, Gerwick WH (2012) Honaucins A− C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships. Chem Biol 19:589–598.  https://doi.org/10.1016/j.chembiol.2012.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Clark BR, Engene N, Teasdale ME, Rowley DC, Matainaho T, Valeriote FA, Gerwick WH (2008) Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J Nat Prod 71:1530–1537.  https://doi.org/10.1021/np800088a CrossRefPubMedPubMedCentralGoogle Scholar
  15. Costantino V, Della SG, Saurav K, Teta R, Bar-Shalom R, Mangoni A, Steindler L (2017) Plakofuranolactone as a Quorum quenching agent from the Indonesian sponge Plakortis cf. lita. Mar Drugs 15:59.  https://doi.org/10.3390/md15030059 CrossRefPubMedCentralGoogle Scholar
  16. Daly M, Brugler MR, Cartwright P, Collins AG, Dawson MN, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E, Romano SL (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182. www.mapress.com/zootaxa/ Google Scholar
  17. de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849.  https://doi.org/10.1128/IAI.68.9.4839-4849.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427.  https://doi.org/10.1080/08927010902853516 CrossRefPubMedGoogle Scholar
  19. Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ (2010) Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ Microbiol Rep 2:739–744.  https://doi.org/10.1111/j.1758-2229.2010.00169.x CrossRefPubMedGoogle Scholar
  20. Dobretsov S, Abed RM, Al-Maskari SM, Al-Sabahi JN, Victor R (2011a) Cyanobacterial mats from hot springs produce antimicrobial compounds and quorum-sensing inhibitors under natural conditions. J Appl Phycol 23:983–993.  https://doi.org/10.1007/s10811-010-9627-2 CrossRefGoogle Scholar
  21. Dobretsov S, Teplitski M, Bayer M, Gunasekera S, Proksch P, Paul VJ (2011b) Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27:893–905.  https://doi.org/10.1080/08927014.2011.609616 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dobretsov S, Al-Wahaibi AS, Lai D, Al-Sabahi J, Claereboudt M, Proksch P, Soussi B (2015) Inhibition of bacterial fouling by soft coral natural products. Int Biodeter Biodegr 98:53–58.  https://doi.org/10.1016/j.ibiod.2014.10.019 CrossRefGoogle Scholar
  23. Dunny GM, Leonard BAB (1997) Cell-cell communication in Gram-positive bacteria. Annu Rev Microbiol 51:527–564. doi: Not availableCrossRefPubMedGoogle Scholar
  24. Farrand SK, Qin Y, Oger P (2002) Quorum-sensing system of Agrobacterium plasmids: analysis and utility. Methods Enzymol 358:452–484.  https://doi.org/10.1016/S0076-6879(02)58108-8 CrossRefPubMedGoogle Scholar
  25. Faruque SM, Biswas K, Udden SM, Ahmad QS, Sack DA, Nair GB, Mekalanos JJ (2006) Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci U S A 103:6350–6355.  https://doi.org/10.1073/pnas.0601277103 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682.  https://doi.org/10.1080/08927014.2013.796939 CrossRefPubMedGoogle Scholar
  27. Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11:176.  https://doi.org/10.6026/97320630011176 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heidari AE, Moghaddam S, Truong KK, Chou L, Genberg C, Brenner M, Chen Z (2015) Visualizing biofilm formation in endotracheal tubes using endoscopic three-dimensional optical coherence tomography. J Biomed Opt 20:126010.  https://doi.org/10.1117/1.JBO.20.12.126010 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102.  https://doi.org/10.1099/00221287-148-1-87 CrossRefPubMedGoogle Scholar
  30. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815.  https://doi.org/10.1093/emboj/cdg366 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332.  https://doi.org/10.1016/j.ijantimicag.2009.12.011 CrossRefPubMedGoogle Scholar
  32. Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Ann Rev Biomed Eng 10:145–167.  https://doi.org/10.1146/annurev.bioeng.10.061807.160536 CrossRefGoogle Scholar
  33. Jha B, Kavita K, Westphal J, Hartmann A, Schmitt-Kopplin P (2013) Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar Drugs 11:253–265.  https://doi.org/10.3390/md11010253 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245.  https://doi.org/10.1016/j.biotechadv.2012.10.004 CrossRefPubMedGoogle Scholar
  35. Kim J, Kim Y, Seo Y, Park S (2007) Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnol Bioprocess Eng 12:308–311.  https://doi.org/10.1007/BF02931109 CrossRefGoogle Scholar
  36. King RK, Flick GJ, Smith SA, Pierson MD, Boardman GD, Coale CW (2008) Response of bacterial biofilms in recirculating aquaculture systems to various sanitizers. J Appl Aquac 20:79–92.  https://doi.org/10.1080/10454430802191766 CrossRefGoogle Scholar
  37. Kjaerulff L, Nielsen A, Mansson M, Gram L, Larsen TO, Ingmer H, Gotfredsen CH (2013) Identification of four new agr quorum sensing-interfering cyclodepsipeptides from a marine Photobacterium. Mar Drugs 11:5051–5062.  https://doi.org/10.3390/md11125051 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L (2015) Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J Nat Prod 78:1671–1682.  https://doi.org/10.1021/acs.jnatprod.5b00301 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kong FD, Zhou LM, Ma QY, Huang SZ, Wang P, Dai HF, Zhao YX (2017) Metabolites with Gram-negative bacteria quorum sensing inhibitory activity from the marine animal endogenic fungus Penicillium sp. SCS-KFD08. Arch Pharm Res 40:25–31.  https://doi.org/10.1007/s12272-016-0844-3 CrossRefPubMedGoogle Scholar
  40. Kwan JC, Teplitski M, Gunasekera SP, Paul VJ, Luesch H (2010) Isolation and biological evaluation of 8-epi-malyngamide C from the Floridian marine cyanobacterium Lyngbya majuscula. J Nat Prod 73:463–466.  https://doi.org/10.1021/np900614n CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kwan JC, Meickle T, Ladwa D, Teplitski M, Paul V, Luesch H (2011) Lyngbyoic acid, a “tagged” fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. Mol BioSyst 7:1205–1216.  https://doi.org/10.1039/C0MB00180E CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56.  https://doi.org/10.1038/nrmicro1557 CrossRefPubMedGoogle Scholar
  43. Li X, Jeong JH, Lee KT, Rho JR, Choi HD, Kang JS, Son BW (2003) γ-Pyrone derivatives, kojic acid methyl ethers from a marine-derived fungus Altenaria sp. Arch Pharm Res 26:532–534. doi: Not availableCrossRefPubMedGoogle Scholar
  44. Li M, Huiru Z, Biting D, Yun J, Wei J, Kunming D (2013) Study on the anti-quorum sensing activity of a marine bacterium Staphylococcus saprophyticus 108. Biotechol Indian J 7:11. doi: Not availableGoogle Scholar
  45. Linthorne JS, Chang BJ, Flematti GR, Ghisalberti EL, Sutton DC (2015) A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive. Mar Biotechnol 17:33–42.  https://doi.org/10.1007/s10126-014-9592-x CrossRefPubMedGoogle Scholar
  46. Liu HB, Koh KP, Kim JS, Seo Y, Park S (2008) The effects of betonicine, floridoside, and isethionic acid from the red alga Ahnfeltiopsis flabelliformis on quorum-sensing activity. Biotechnol Bioprocess Eng 13:458–463.  https://doi.org/10.1007/s12257-008-0145 CrossRefGoogle Scholar
  47. Mai T, Tintillier F, Lucasson A, Moriou C, Bonno E, Petek S, Magre K, Al Mourabit A, Saulnier D, Debitus C (2015) Quorum sensing inhibitors from Leucetta chagosensis Dendy, 1863. Lett Appl Microbiol 61:311–317.  https://doi.org/10.1111/lam.12461 CrossRefPubMedGoogle Scholar
  48. Manefield M, Harris L, Rice SA, De Nys R, Kjelleberg S (2000) Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl Environ Microbiol 66:2079–2084.  https://doi.org/10.1128/AEM.66.5.2079-2084.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mansson M, Nielsen A, Kjærulff L, Gotfredsen CH, Wietz M, Ingmer H, Gram L, Larsen TO (2011) Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine Photobacterium. Mar Drugs 9:2537–2552.  https://doi.org/10.3390/md9122537 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Martínez-Matamoros D, Fonseca ML, Duque C, Ramos FA, Castellanos L (2016) Screening of marine bacterial strains as source of quorum sensing inhibitors (QSI): first chemical study of Oceanobacillus profundus (RKHC-62B). Vitae 23:30–47.  https://doi.org/10.17533/udea.vitae.v23n1a04 CrossRefGoogle Scholar
  51. Martín-Rodríguez AJ, Reyes F, Martín J, Pérez-Yépez J, León-Barrios M, Couttolenc A, Espinoza C, Trigos Á, Martín VS, Norte M, Fernández JJ (2014) Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 12:5503–5526.  https://doi.org/10.3390/md12115503 CrossRefPubMedPubMedCentralGoogle Scholar
  52. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711.  https://doi.org/10.1099/00221287-143-12-3703 CrossRefPubMedGoogle Scholar
  53. Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M (2016) Microbiome shifts and the inhibition of quorum sensing by Black Band disease cyanobacteria. ISME J 10:1204–1216.  https://doi.org/10.1038/ismej.2015.184 CrossRefPubMedGoogle Scholar
  54. Montaser R, Paul VJ, Luesch H (2013) Modular strategies for structure and function employed by marine cyanobacteria: characterization and synthesis of pitinoic acids. Org Lett 15:4050–4053.  https://doi.org/10.1021/ol401396u CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nasrolahi A, Stratil SB, Jacob KJ, Wahl M (2012) A protective coat of microorganisms on macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on barnacle attachment. FEMS Microbiol Ecol 81:583–595.  https://doi.org/10.1111/j.1574-6941.2012.01384.x CrossRefPubMedGoogle Scholar
  56. Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P, Defoirdt T (2011) Effect of micro-algae commonly used in aquaculture on acyl homoserine lactone quorum sensing. Aquaculture 317:53–57.  https://doi.org/10.1016/j.aquaculture.2011.04.038 CrossRefGoogle Scholar
  57. Nealson KH, Platt T, Hastings W (1970) Cellular control of the synthesis and activity of the bacterial biolumionescent system. J Bacteriol 104:313–322. doi: Not availablePubMedPubMedCentralGoogle Scholar
  58. Nhan DT, Cam DTV, Wille M, Defoirdt T, Bossier P, Sorgeloos P (2010) Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. J Appl Microbiol 109:1007–1016.  https://doi.org/10.1111/j.1365-2672.2010.04728.x CrossRefPubMedGoogle Scholar
  59. Nielsen A, Månsson M, Bojer MS, Gram L, Larsen TO, Novick RP, Frees D, Frøkiær H, Ingmer H (2014) Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils. PLoS One 9:e84992.  https://doi.org/10.1371/journal.pone.0084992 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564.  https://doi.org/10.1146/annurev.genet.42.110807.091640 CrossRefPubMedGoogle Scholar
  61. Padmavathi AR, Abinaya B, Pandian SK (2014) Phenol, 2, 4-bis (1, 1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 30:1111–1122.  https://doi.org/10.1080/08927014.2014.972386 CrossRefPubMedGoogle Scholar
  62. Peters L, König GM, Wright AD, Pukall R, Stackebrandt E, Eberl L, Riedel K (2003) Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl Environ Microbiol 69:3469–3475.  https://doi.org/10.1128/AEM.69.6.3469-3475.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Quintana J, Brango-Vanegas J, Costa GM, Castellanos L, Arévalo C, Duque C (2015) Marine organisms as source of extracts to disrupt bacterial communication: bioguided isolation and identification of quorum sensing inhibitors from Ircinia felix. Rev Bras Farmacogn 25:199.  https://doi.org/10.1016/j.bjp.2015.03.013 CrossRefGoogle Scholar
  64. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814.  https://doi.org/10.1128/JB.187.5.1799-1814.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rocha J, Peixe L, Gomes NCM, Calado R (2011) Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar Drugs 9:1860–1886.  https://doi.org/10.3390/md9101860 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Romero M, Acuña L, Otero A (2012) Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 6:2–12.  https://doi.org/10.2174/187220812799789208 CrossRefPubMedGoogle Scholar
  67. Saurav K, Bar-Shalom R, Haber M, Burgsdorf I, Oliviero G, Costantino V, Morgenstern D, Steindler L (2016) In search of alternative antibiotic drugs: quorum-quenching activity in sponges and their bacterial isolates. Front Microbiol 7:416.  https://doi.org/10.3389/fmicb.2016.00416 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schwartz N, Dobretsov S, Rohde S, Schupp PJ (2017) Comparison of antifouling properties of native and invasive Sargassum (Fucales, Phaeophyceae) species. Eur J Phycol 52:116–131.  https://doi.org/10.1080/09670262.2016.1231345 CrossRefGoogle Scholar
  69. Sharp JH, Winson MK, Porter JS (2007) Bryozoan metabolites: an ecological perspective. Nat Prod Rep 24:659–673.  https://doi.org/10.1039/B617546E CrossRefPubMedGoogle Scholar
  70. Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol 10:56–63.  https://doi.org/10.1007/s10126-007-9036-y CrossRefPubMedGoogle Scholar
  71. Someya N, Morohoshi T, Okano N, Otsu E, Usuki K, Sayama M, Sekiguchi H, Ikeda T, Ishida S (2009) Distribution of N-acylhomoserine lactone-producing fluorescent pseudomonads in the phyllosphere and rhizosphere of potato (Solanum tuberosumL.) Microbes Environ 24:305–314.  https://doi.org/10.1264/jsme2.ME09155 CrossRefPubMedGoogle Scholar
  72. Steindler L, Venturi V (2007) Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol Lett 266:1–9.  https://doi.org/10.1111/j.1574-6968.2006.00501.x CrossRefPubMedGoogle Scholar
  73. Supriyono A, Schwarz B, Wray V, Witte L, Müller WEG, Soest RV, Sumaryono W, Proksch P (1995) Bioactive alkaloids from the tropical marine sponge Axinella carteri. Z Naturforschung C 50:669–674.  https://doi.org/10.1515/znc-1995-9-1012 CrossRefGoogle Scholar
  74. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281.  https://doi.org/10.1128/jb.179.17.5271-5281.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572.  https://doi.org/10.1128/AEM.00632-08 CrossRefPubMedGoogle Scholar
  76. Teasdale ME, Donovan KA, Forschner-Dancause SR, Rowley DC (2011) Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors. Mar Biotechnol 13:722–732.  https://doi.org/10.1007/s10126-010-9334-7 CrossRefPubMedGoogle Scholar
  77. Tello E, Castellanos L, Arevalo-Ferro C, Duque C (2009) Cembranoid diterpenes from the Caribbean Sea whip Eunicea knighti. J Nat Prod 72:1595–1602.  https://doi.org/10.1021/np9002492 CrossRefPubMedGoogle Scholar
  78. Tello E, Castellanos L, Arevalo-Ferro C, Rodríguez J, Jiménez C, Duque C (2011) Absolute stereochemistry of antifouling cembranoid epimers at C-8 from the Caribbean octocoral Pseudoplexaura flagellosa. Revised structures of plexaurolones. Tetrahedron 67:9112–9121.  https://doi.org/10.1016/j.tet.2011.09.094 CrossRefGoogle Scholar
  79. Tello E, Castellanos L, Arévalo-Ferro C, Duque C (2012) Disruption in quorum-sensing systems and bacterial biofilm inhibition by Cembranoid Diterpenes isolated from the octocoral Eunicea knighti. J Nat Prod 75:1637–1642.  https://doi.org/10.1021/np300313k CrossRefPubMedGoogle Scholar
  80. Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compound that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146.  https://doi.org/10.1104/pp.103.029918 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tinh NTN, Yen VHN, Dierckens K, Sorgeloos P, Bossier P (2008) An acyl homoserine lactone-degrading microbial community improves the survival of first feeding turbot larvae (Scophthalmus maximus L.) Aquaculture 285:56–62.  https://doi.org/10.1016/j.aquaculture.2008.08.018 CrossRefGoogle Scholar
  82. Torres M, Romero M, Prado S, Dubert J, Tahrioui A, Otero A, Llamas I (2013) N-acylhomoserine lactone-degrading bacteria isolated from hatchery bivalve larval cultures. Microbiol Res 168:547–554.  https://doi.org/10.1016/j.micres.2013.04.011 CrossRefPubMedGoogle Scholar
  83. Wietz M, Mansson M, Gotfredsen CH, Larsen TO, Gram L (2010) Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar Drugs 8:2946–2960.  https://doi.org/10.3390/md8122946 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192.  https://doi.org/10.1111/j.1574-6968.1998.tb13044.x CrossRefPubMedGoogle Scholar
  85. Wu B, Ohlendorf B, Oesker V, Wiese J, Malien S, Schmaljohann R, Imhoff JF (2015) Acetyl cholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Mar Biotechnol 17:110–119.  https://doi.org/10.1007/s10126-014-9599-3 CrossRefPubMedGoogle Scholar
  86. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR (2009) Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054.  https://doi.org/10.1128/AAC.00774-09 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Younis KM, Usup G, Ahmad A (2016) Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis. Environ Sci Pollut Res 23:4756–4767.  https://doi.org/10.1007/s11356-015-5687-9 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Bioinformatics and BiotechnologySavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of MicrobiologySavitribai Phule Pune UniversityPuneIndia

Personalised recommendations