Advertisement

Synergism Between Quorum Sensing Inhibitors and Antibiotics: Combating the Antibiotic Resistance Crisis

  • Sahana Vasudevan
  • Shogan Sugumar Swamy
  • Gurmeet Kaur
  • S. Adline Princy
  • P. BalamuruganEmail author
Chapter
  • 607 Downloads

Abstract

With the alarming increase in the antibiotic resistance, there is an immediate need for alternative therapeutic strategies to combat this ever-changing bacterial battle. Combinatorial therapies have gained attention owing to their multiple targeted actions. The use of antibiotic is inevitable and antibiotics in combinations have been in use to treat drug resistant infections. Nevertheless, the multidrug resistant strains have found their own mechanisms to surpass such combinatorial treatments. Quorum sensing (QS) inhibition is considered to be the silver lining but is yet to find its way to commercial use. Hence, to combat the antibiotic resistance crisis, the synergy of QSIs and antibiotics is one of the possible revolutionary approaches. In this chapter, we have highlighted the importance and need for the synergy approach with the successful in vitro and in vivo studies that can possibly be extended to the commercial use.

Keywords

Biofilm Antibiotic Resistance Quorum sensing inhibition Synergy 

References

  1. Agarwala M, Choudhury B, Yadav RN (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54:365–368.  https://doi.org/10.1007/s12088-014-0462-z CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP (2017) A bacteriophage mediated gold nanoparticle synthesis and their antibiofilm activity. Indian J Microbiol 57:188–194.  https://doi.org/10.1007/s12088-017-0640-x CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arunkumar M, Mahesh N, Balakumar S, Sivakumar R, Priyadharshni S (2013) Antiquorum sensing and antibacterial activity of silver nanoparticles synthesized by mutant Klebsiella pneumoniae MTCC 3354. Asian J Chem 25:9961–9964.  https://doi.org/10.14233/ajchem.2013.15754 CrossRefGoogle Scholar
  4. Balaban N, Giacometti A, Cirioni O, Gov Y, Ghiselli R, Mocchegiani F, Viticchi C, Del Prete MS, Saba V, Scalise G, Dell’Acqua G (2003) Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J Infect Dis 187:625–630.  https://doi.org/10.1086/345879 CrossRefPubMedGoogle Scholar
  5. Balamurugan P, Hema M, Kaur G, Sridharan V, Prabu PC, Sumana MN, Princy SA (2015) Development of a biofilm inhibitor molecule against multidrug resistant Staphylococcus aureus associated with gestational urinary tract infections. Front Microbiol 6:832.  https://doi.org/10.3389/fmicb.2015.00832 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barapatre A, Aadil KR, Jha H (2016) Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour Bioprocess 3:8.  https://doi.org/10.1186/s40643-016-0083-y CrossRefGoogle Scholar
  7. Bose D, Chatterjee S (2015) Antibacterial activity of green synthesized silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract. Indian J Microbiol 55:163–167.  https://doi.org/10.1007/s12088-015-0512-1 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661.  https://doi.org/10.1128/AAC.00045-11 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chang PC, Li HY, Tang HJ, Liu JW, Wang JJ, Chuang YC (2007) In vitro synergy of baicalein and gentamicin against vancomycin resistant Enterococcus. J Microbiol Immunol Infect 40:56–61PubMedGoogle Scholar
  10. Deng H, McShan D, Zhang Y, Sinha SS, Arslan Z, Ray PC, Yu H (2016) Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol 50:8840–8848.  https://doi.org/10.1021/acs.est.6b00998 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dobrucka R, Długaszewska J (2015) Antimicrobial activities of silver nanoparticles synthesized by using water extract of Arnicae anthodium. Indian J Microbiol 55:168–174.  https://doi.org/10.1007/s12088-015-0516-x CrossRefPubMedPubMedCentralGoogle Scholar
  12. Doern CD (2014) When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol 52:4124–4128.  https://doi.org/10.1128/JCM.01121-14 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB (2007) Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51:2733–2740.  https://doi.org/10.1128/AAC.01249-06 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fujita M, Shiota S, Kuroda T, Hatano T, Yoshida T, Mizushima T, Tsuchiya T (2005) Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin resistant Staphylococcus aureus. Microbiol Immunol 49:391–396.  https://doi.org/10.1111/j.1348-0421.2005.tb03732.x CrossRefPubMedGoogle Scholar
  15. Gerdt JP, Blackwell HE (2014) Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. ACS Chem Biol 9:2291–2299.  https://doi.org/10.1021/cb5004288 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Goldoni M, Johansson C (2007) A mathematical approach to study combined effects of toxicants in vitro: evaluation of the Bliss independence criterion and the Loewe additivity model. Toxicol Vitro 21:759–769.  https://doi.org/10.1016/j.tiv.2007.03.003 CrossRefGoogle Scholar
  17. Gurunathan S, Han JW, Kwon DN, Kim JH (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9:373–390.  https://doi.org/10.1186/1556-276X-9-373 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Habash MB, Park AJ, Vis EC, Harris RJ, Khursigara CM (2014) Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 Biofilms. Antimicrob Agents Chemother 58:5818–5830.  https://doi.org/10.1128/AAC.03170-14 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hema M, Princy SA, Sridharan V, Vinoth P, Balamurugan P, Sumana M (2016) Synergistic activity of quorum sensing inhibitor, pyrizine-2-carboxylic acid and antibiotics against multi-drug resistant V. cholerae. RSC Adv 6:45938–45946.  https://doi.org/10.1039/C6RA04705J CrossRefGoogle Scholar
  20. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815.  https://doi.org/10.1093/emboj/cdg366 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hossain MA, Park JY, Kim JY, Suh JW, Park SC (2014) Synergistic effect and antiquorum sensing activity of Nymphaea tetragona (water lily) extract. Bio Med Res Int 2014:562173.  https://doi.org/10.1155/2014/562173 CrossRefGoogle Scholar
  22. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju SC, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011.  https://doi.org/10.4014/jmb.1105.05056 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726.  https://doi.org/10.1099/jmm.0.047100-0 CrossRefPubMedGoogle Scholar
  24. Ilk S, Sağlam N, Özgen M, Korkusuz F (2017) Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol 94:653–662.  https://doi.org/10.1016/j.ijbiomac.2016.10.068 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140.  https://doi.org/10.3109/1040841X.2010.532479 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and –lactonase. Open Microbiol J 5:1–13.  https://doi.org/10.2174/1874285801105010001 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245.  https://doi.org/10.1016/j.biotechadv.2012.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kalia VC, Kumar P, Pandian SK, Sharma P (2014a) Chapter 15: biofouling control by quorum quenching. In: Kim SK (ed) Hb_25 Springer handbook of marine biotechnology. Springer, Berlin, pp 431–440Google Scholar
  29. Kalia VC, Wood TK, Kumar P (2014b) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23.  https://doi.org/10.1007/s00248-013-0316-y CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kalia VC (2014) In search of versatile organisms for quorum-sensing inhibitors: acyl homoserine lactones (AHL)-acylase and AHL-lactonase. FEMS Microbiol Lett 359:143.  https://doi.org/10.1111/1574-6968.12585 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kalia VC (2015) Microbes: the most friendly beings? In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 1–5. ISBN 978-81-322-1981-1.  https://doi.org/10.1007/978-81-322-1982-8_1 CrossRefGoogle Scholar
  32. Kalia VC, Kumar P (2015a) Potential applications of quorum sensing inhibitors in diverse fields. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 359–370.  https://doi.org/10.1007/978-81-322-1982-8_29 CrossRefGoogle Scholar
  33. Kalia VC, Kumar P (2015b) The Battle: quorum-sensing inhibitors versus evolution of bacterial resistance. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer India, New Delhi, pp 385–391.  https://doi.org/10.1007/978-81-322-1982-8_31 CrossRefGoogle Scholar
  34. Kaur G, Balamurugan P, Uma Maheswari C, Anitha A, Princy SA (2016) Combinatorial effects of aromatic 1, 3-disubstituted Ureas and fluoride on in vitro inhibition of Streptococcus mutans biofilm formation. Front Microbiol 7:861.  https://doi.org/10.3389/fmicb.2016.00861 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kaur G, Balamurugan P, Princy SA (2017) Inhibition of the quorum sensing system (ComDE Pathway) by aromatic 1,3-di-m-tolylurea (DMTU): cariostatic effect with fluoride in wistar rats. Front Cell Infect Microbiol 7:313.  https://doi.org/10.3389/fcimb.2017.00313 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kiran S, Sharma P, Harjai K, Capalash N (2011) Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa. Iran J Microbiol 3:1–12PubMedPubMedCentralGoogle Scholar
  37. Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18.  https://doi.org/10.1007/s12088-015-0558-0 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Koul S, Kalia VC (2017) Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population. Indian J Microbiol 57:100–108.  https://doi.org/10.1007/s12088-016-0633-1 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kumar P, Koul S, Patel SKS, Lee JK, Kalia VC (2015) Heterologous expression of quorum sensing inhibitory genes in diverse organisms. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 343–356.  https://doi.org/10.1007/978-81-322-1982-8_28 CrossRefGoogle Scholar
  40. Kutty SK, Barraud N, Pham A, Iskander G, Rice SA, Black DS, Kumar N (2013) Design, synthesis, and evaluation of fimbrolide-nitric oxide donor hybrids as antimicrobial agents. J Med Chem 56:9517–9529.  https://doi.org/10.1021/jm400951f CrossRefPubMedGoogle Scholar
  41. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4.  https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
  42. Pammi M, Liang R, Hicks JM, Barrish J, Versalovic J (2011) Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr Res 70:578–583.  https://doi.org/10.1203/PDR.0b013e318232a984 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Prichard MN, Prichard LE, Baguley WA, Nassiri MR, Shipman C (1991) Three-dimensional analysis of the synergistic cytotoxicity of ganciclovir and zidovudine. Antimicrob Agents Chemother 35:1060–1065.  https://doi.org/10.1128/AAC.35.6.1060 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Prichard MN, Prichard LE, Shipman C (1993) Strategic design and three-dimensional analysis of antiviral drug combinations. Antimicrob Agents Chemother 37:540–545.  https://doi.org/10.1128/AAC.37.3.540 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rogers SA, Huigens RW, Cavanagh J, Melander C (2010) Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 54:2112–2118.  https://doi.org/10.1128/AAC.01418-09 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Roudashti S, Zeighami H, Mirshahabi H, Bahari S, Soltani A, Haghi F (2017) Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J Microbiol Biotechnol 33:50.  https://doi.org/10.1007/s11274-016-2195-0 CrossRefPubMedGoogle Scholar
  47. Roy V, Meyer MT, Smith JA, Gamby S, Sintim HO, Ghodssi R, Bentley WE (2013) AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol 97:2627–2638.  https://doi.org/10.1007/s00253-012-4404-6 CrossRefPubMedGoogle Scholar
  48. Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 4:47.  https://doi.org/10.3389/fmicb.2013.00047 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719.  https://doi.org/10.1038/srep13719 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Subramaniam S, Keerthiraja M, Sivasubramanian A (2014) Synergistic antibacterial action of β-sitosterol-D-glucopyranoside isolated from Desmostachya bipinnata leaves with antibiotics against common human pathogens. Rev Bras Farm 24:44–50.  https://doi.org/10.1590/0102-695X20142413348 CrossRefGoogle Scholar
  51. Sun S, Li Y, Guo Q, Shi C, Yu J, Ma L (2008) In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob Agents Chemother 52:409–417.  https://doi.org/10.1128/AAC.01070-07 CrossRefPubMedGoogle Scholar
  52. Szweda P, Gucwa K, Kurzyk E, Romanowska E, Dzierżanowska-Fangrat K, Jurek AZ, Kuś PM, Milewski S (2015) Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J Microbiol 55:175–183.  https://doi.org/10.1007/s12088-014-0508-2 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40:277Google Scholar
  54. Wan G, Ruan L, Yin Y, Yang T, Ge M, Cheng X (2016) Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int J Nanomedicine 11:3789.  https://doi.org/10.2147/IJN.S104166 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang D, Shi J, Xiong Y, Hu J, Lin Z, Qiu Y (2017) A QSAR-based mechanistic study on the combined toxicity of antibiotics and quorum sensing inhibitors against Escherichia coli. J Hazard Mater 341:438–447.  https://doi.org/10.1016/j.jhazmat.2017.07.059 CrossRefPubMedGoogle Scholar
  56. Yang H, Novick SJ, Zhao W (2014) Drug combination synergy. In: Zhao W, Yang H (eds) Drug statistical methods in drug combination studies. CRC Press, Boca Raton, pp 17–40. ISBN 978-14-822-1674-5Google Scholar
  57. Zeng Z, Qian L, Cao L, Tan H, Huang Y, Xue X, Shen Y, Zhou S (2008) Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 79:119–126.  https://doi.org/10.1007/s00253-008-1406-5 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zeng X, Liu X, Bian J, Pei G, Dai H, Polyak SW, Song F, Ma L, Wang Y, Zhang L (2011) Synergistic effect of 14-alpha-lipoyl andrographolide and various antibiotics on the formation of biofilms and production of exopolysaccharide and pyocyanin by Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:3015–3017.  https://doi.org/10.1128/AAC.00575-10 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sahana Vasudevan
    • 1
  • Shogan Sugumar Swamy
    • 1
  • Gurmeet Kaur
    • 1
  • S. Adline Princy
    • 1
  • P. Balamurugan
    • 1
    Email author
  1. 1.Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and BiotechnologySASTRA Deemed UniversityThanjavurIndia

Personalised recommendations