Advertisement

Inhibition of Quorum-Sensing: A New Paradigm in Controlling Bacterial Virulence and Biofilm Formation

  • Aleksandra Ivanova
  • Kristina Ivanova
  • Tzanko Tzanov
Chapter

Abstract

Bacterial pathogens coordinate the expression of multiple virulence factors and formation of biofilms in cell density dependent manner, through a phenomenon named quorum sensing (QS). Protected in the biofilm community, bacterial cells resist the antibiotic treatment and host immune responses, ultimately resulting in difficult to treat infections. The high incidence of biofilm-related infections is a global concern related with increased morbidity and mortality in healthcare facilities, prolonged time of hospitalization and additional financial cost. This has led to the urgent need for innovative strategies to control bacterial diseases and drug resistance. In this review, we outline the disruption of QS pathways as a novel strategy for attenuation of bacterial virulence and prevention of resistant biofilms formation on medical devices and host tissues. Unlike the traditional antibiotics, inhibiting the QS signaling in bacteria will not kill the pathogen or affect its growth, but will block the targeted genes expression, making the cells less virulent and more vulnerable to host immune response and lower dosage of antimicrobials. We summarize the recent successes and failures in the development of novel anti-QS drugs as well as their application in controlling bacterial infections in healthcare facilities. The inhibitory targeting of the production of QS signals, their transduction and recognition by the other cells in the surrounding are discussed. Special focus is also given to the anti-QS nanomaterials with improved effectiveness and specificity towards the pathogens.

Keywords

Quorum sensing inhibition Bacterial biofilm Drug resistance Nanomaterials 

Notes

Acknowledgements

This work was supported by the European project PROTECT – “Pre-commercial lines for production of surface nanostructured antimicrobial and anti-biofilm textiles, medical devices and water treatment membranes” (H2020 – 720851). A. I. wish to acknowledge Generalitat de Catalunya for providing her Ph.D. grant (2017FI_B_00524).

References

  1. Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282.  https://doi.org/10.1099/mic.0.038794-0 CrossRefPubMedGoogle Scholar
  2. Bahari S, Zeighami H, Mirshahabi H, Roudashti S, Haghi F (2017) Inhibition of Pseudomonas aeruginosa quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J Global Antimicrob Resis 10:21–28.  https://doi.org/10.1016/j.jgar.2017.03.006 CrossRefGoogle Scholar
  3. Bar-Rogovsky H, Hugenmatter A, Tawfik AS (2013) The evolutionary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J Biol Chem 288:23914–23927.  https://doi.org/10.1074/jbc.M112.427922 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26:185–230.  https://doi.org/10.1128/CMR.00059-12 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bijtenhoorn P, Mayerhofer H, Muller-Dieckmann J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thurmer A, Brzuszkiewicz E, Daniel R, Dierking K, Schulenburg H, Streit WR (2011) A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 6:e26278.  https://doi.org/10.1371/journal.pone.0026278 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bortolotti D, Le Maoult J, Trapella C, Di Luca D, Carosella ED, Rizzo R (2015) Pseudomonas aeruginosa quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine-lactone induces HLA-G expression in human immune cells. Infect Immun 83:3918–3925.  https://doi.org/10.1128/IAI.00803-15 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661.  https://doi.org/10.1128/AAC.00045-11 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brackman G, Breyne K, De Rycke R, Vermote A, Van Nieuwerburgh F, Meyer E, Van Calenbergh S, Coenye T (2016) The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci Rep 6:20321.  https://doi.org/10.1038/srep20321 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Broderick A, Stacy DM, Tal-Gan Y, Kratochvil MJ, Blackwell HE, Lynn DM (2014) Surface coatings that promote rapid release of peptide-based agrC inhibitors for attenuation of quorum sensing in Staphylococcus aureus. Adv Healthc Mater 3:97–105.  https://doi.org/10.1002/adhm.201300119 CrossRefPubMedGoogle Scholar
  10. Cao Y, He S, Zhou Z, Zhang M, Mao W, Zhang H, Yao B (2012) Orally administered thermostable N-Acyl homoserine lactonase from bacillus sp. strain ai96 attenuates aeromonas hydrophila infection in zebrafish. Appl Environ Microbiol 78:1899–1908.  https://doi.org/10.1128/AEM.06139-11 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chang CY, Krishnan T, Wang H, Chen Y, Yin W-F, Chong Y-M, Tan LY, Chong TM, Chan K-G (2014) Non-antibiotic quorum sensing inhibitors acting against N -acyl homoserine lactone synthase as drug gable target. Sci Rep 4:7245.  https://doi.org/10.1038/srep07245 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z (2014) Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 5:217.  https://doi.org/10.3389/fmicb.2014.00217 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cheung GYC, Joo HS, Chatterjee SS, Otto M (2014) Phenol-soluble modulins – critical determinants of staphylococcal virulence. FEMS Microbiol Rev 38:698–719.  https://doi.org/10.1111/1574-6976.12057 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Christensen LD, Van Gennip M, Jakobsen TH, Alhede M, Hougen HP, Høiby N, Bjarnsholt T, Givskov M (2012) Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 67:1198–1206.  https://doi.org/10.1093/jac/dks002 CrossRefPubMedGoogle Scholar
  15. Cirioni O, Ghiselli R, Minardi D, Orlando F, Mocchegiani F, Silvestri C, Muzzonigro G, Saba V, Scalise G, Balaban N, Giacometti A (2007) RNAIII-inhibiting peptide affects biofilm formation in a rat model of staphylococcal ureteral stent infection. Antimicrob Agents Chemother 51:4518–4520.  https://doi.org/10.1128/AAC.00808-07 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Czajkowski R, Krzyzanowska D, Karczewska J, Atkinson S, Przysowa S, Lojkowska E, Williams P, Jafra S (2011) Inactivation of AHLs by Ochrobactrum Sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 3:59–68.  https://doi.org/10.1111/j.1758-2229.2010.00188 CrossRefPubMedGoogle Scholar
  17. De Lamo Marin S, Xu Y, Meijler MM, Janda KD (2007) Antibody catalyzed hydrolysis of a quorum sensing signal found in Gram-negative bacteria. Bioorg Med Chem Lett 17:1549–1552.  https://doi.org/10.1016/j.bmcl.2006.12.118 CrossRefPubMedGoogle Scholar
  18. Dey D, Ghosh S, Ray R, Hazra B (2016) Polyphenolic secondary metabolites synergize the activity of commercial antibiotics against clinical isolates of β-lactamase-producing Klebsiella pneumoniae. Phytother Res 30:272–282.  https://doi.org/10.1002/ptr.5527 CrossRefPubMedGoogle Scholar
  19. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817.  https://doi.org/10.1038/35081101 CrossRefPubMedGoogle Scholar
  20. Fernandes MM, Ivanova K, Francesko A, Rivera D, Burgues J-T, Gedanken A, Mendonza E, Tzanov T (2016) Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomed: Nanotechnol Biol Med 12:2061–2069.  https://doi.org/10.1016/j.nano.2016.05.018 CrossRefGoogle Scholar
  21. Fernandes MM, Ivanova K, Hoyo J, Pérez-Rafael S, Francesko A, Tzanov T (2017) Nanotransformation of vancomycin overcomes the intrinsic resistance of Gram-negative bacteria. ACS Appl Mater Interfaces 9:15022–15030.  https://doi.org/10.1021/acsami.7b00217 CrossRefPubMedGoogle Scholar
  22. Francesko A, Fernandes MM, Ivanova K, Amorimb S, Reis RL, Pashkuleva I, Mendozad E, Pfeifer A, Heinze T, Tzanov T (2016) Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater 33:203–212.  https://doi.org/10.1016/j.actbio.2016.01.020 CrossRefPubMedGoogle Scholar
  23. Furiga A, Lajoie B, El Hage S, Baziard G, Roques C (2016) Impairment of Pseudomonas aeruginosa biofilm resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor. Antimicrob Agents Chemother 60:1676–1686.  https://doi.org/10.1128/AAC.02533-15 CrossRefPubMedCentralGoogle Scholar
  24. Galloway WRJD, Hodgkinson TJ, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67.  https://doi.org/10.1021/cr100109t CrossRefPubMedGoogle Scholar
  25. Gamby S, Roy V, Guo M, Smith JAI, Wang J, Stewart JE, Wang X, Bentley WE, Sintim HO (2012) Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem Biol 7:1023–1030.  https://doi.org/10.1021/cb200524y CrossRefPubMedGoogle Scholar
  26. García-Lara B, Saucedo-Mora MA, Roldan-Sanchez JA, Perez-Eretza B, Ramasamy M, Lee J, Coria-Jimenez R, Tapia M, Varela-GuerreroV G-CR (2015) Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol 61:299–305.  https://doi.org/10.1111/lam.12456 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Geske GD, Mattmann ME, Blackwell HE (2008) Evaluation of a focused library of N-aryl L-homoserine lactones reveals a new set of potent quorum sensing modulators. Bioorg Med Chem Lett 18:5978–5981.  https://doi.org/10.1016/j.bmcl.2008.07.089 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Grant SS, Hung DT (2013) Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4:273–283.  https://doi.org/10.4161/viru.23987 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gray B, Hall P, Gresham H (2013) Targeting agr- and agr-like quorum sensing systems for development of common therapeutics to treat multiple Gram-positive bacterial infections. Sensors 13:5130–5166.  https://doi.org/10.3390/s130405130 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grover N, Plaks JG, Summers SR, Chado GR, Schurr MJ, Kaar JL (2016) Acylase-containing polyurethane coatings with anti-biofilm activity. Biotechnol Bioeng 113:2535–2543.  https://doi.org/10.1002/bit.26019 CrossRefPubMedGoogle Scholar
  31. Gupta P, Chhibber S, Harjai K (2015) Efficacy of purified lactonase and ciprofloxacin in preventing systemic spread of Pseudomonas aeruginosa in murine burn wound model Burns. Burns 41:153e162.  https://doi.org/10.1016/j.burns.2014.06.009 CrossRefGoogle Scholar
  32. Hawver LA, Jung SA, Ng W-L (2016) Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev 40:738–752.  https://doi.org/10.1093/femsre/fuw014 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hema M, AdlinePrincy S, Sridharan V, Vinoth P, Balamurugan P, Sumana MN (2016) Synergistic activity of quorum sensing inhibitor, pyrizine-2-carboxylic acid and antibiotics against multi-drug resistant: V. cholerae. RSC Adv 6:45938–45946.  https://doi.org/10.1039/c6ra04705j CrossRefGoogle Scholar
  34. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300–1307.  https://doi.org/10.1172/JCI200320074 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hong K-W, Koh C-L, Sam C-K, Yin W-F, Chan K-G (2012) Quorum quenching revisited-from signal decays to signalling confusion. Sensors 12:4661–4696.  https://doi.org/10.3390/s120404661 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Huang JJ, J-In H, Zhang L-H, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949.  https://doi.org/10.1128/AEM.69.10.5941 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ilk S, Saglamb N, Özgenc M, Korkusuz F (2017) Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol 94:653–662.  https://doi.org/10.1016/j.ijbiomac.2016.10.068 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ivanova K, Fernandes MM, Tzanov T (2013) In: Mendez-Vilas A (ed) Current advances on bacterial pathogenesis inhibition and treatment strategies. Microbial pathogens and strategies for combating them: science, technology and education, vol 1. Formatex Research Center, Badajoz, pp 322–336Google Scholar
  39. Ivanova K, Fernandes MM, Francesko A, Mendoza E, Guezguez J, Burnet M, Tzanov T (2015a) Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters. ACS Appl Mater Interfaces 7:27066–27077.  https://doi.org/10.1021/acsami.5b09489 CrossRefPubMedGoogle Scholar
  40. Ivanova K, Fernandes MM, Mendoza E, Tzanov T (2015b) Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Appl Microbiol Biotechnol 99:4373–4385.  https://doi.org/10.1007/s00253-015-6378-7 CrossRefPubMedGoogle Scholar
  41. Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469.  https://doi.org/10.1128/AAC.50.4.1463–1469.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kai K, Fujii H, Ikenaka R, Akagawa M, Hayashi H (2014) An acyl-SAM analog as an affinity ligand for identifying quorum sensing signal synthases. Chem Commun 50:8586–8589.  https://doi.org/10.1039/c4cc03094j CrossRefGoogle Scholar
  43. Kalia VC (2015) Microbes: the most friendly beings? In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer India, pp 1–5.  https://doi.org/10.1007/978-81-322-1982-8_1. ISBN 978-81-322-1981-1Google Scholar
  44. Kasper SH, Hart R, Bergkvist M, Musah RA, Cady NC (2016) Zein nanocapsules as a tool for surface passivation, drug delivery and biofilm prevention. AIMS Microbiol 2:422–433.  https://doi.org/10.3934/microbiol.2016.4.422 CrossRefGoogle Scholar
  45. Kaufmann GF, Park J, Mee JM, Ulevitch RJ, Janda KD (2008) The quorum quenching antibody RS2-1G9 protects macrophages from the cytotoxic effects of the Pseudomonas aeruginosa quorum sensing signalling molecule N-3-oxo-dodecanoyl-homoserine lactone. Mol Immunol 45:2710–2714.  https://doi.org/10.1016/j.molimm.2008.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Khan BA, Yeh AJ, Cheung GYC, Otto M (2015) Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections. Informa Healthcare 24:1–16.  https://doi.org/10.1517/13543784.2015.1019062 CrossRefGoogle Scholar
  47. Kim H-S, Lee S-H, Byun Y, Park H-D (2015) 6-gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 5:8656.  https://doi.org/10.1038/srep08656 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kiran S, Sharma P, Harjai K, Capalash N (2011) Enzymatic quorum quenching increases antibiotic susceptibility of multidrug resistant Pseudomonas aeruginosa. Iran J Microbiol 3:1–12PubMedPubMedCentralGoogle Scholar
  49. Koch G, Nadal-Jimeneza P, Reisa CR, Muntendama R, Bokhoveb M, Melilloa E, Dijkstrab BW, Coola RH, Quax WJ (2014) Reducing virulence of the human hathogen Burkholderia by altering the substrate specificity of the quorum-quenching Acylase PvdQ. Proc Nat Acad Sci 111:1568–1573.  https://doi.org/10.1073/pnas.1311263111 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kuo D, Yu G, Hoch W, Gabay D, Long L, Ghannoum M, Nagy N, Harding CV, Viswanathan R, Shoham M (2015) Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (mrsa) wound healing and sensitize mrsa to β-lactam antibiotics. Antimicrob Agents Chemother 59:1512–1518.  https://doi.org/10.1128/AAC.04767-14 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lade H, Paul D, Kweon JH (2014) Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 10:550–565.  https://doi.org/10.7150/ijbs.9028 CrossRefPubMedPubMedCentralGoogle Scholar
  52. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111.  https://doi.org/10.1128/MMBR.00046-12 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Le KY, Otto M (2015) Quorum-sensing regulation in staphylococci-an overview. Front Microbiol 6:1174.  https://doi.org/10.3389/fmicb.2015.01174 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lee J, Zhang L (2014) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41.  https://doi.org/10.1007/s13238-014-0100-x CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lee K, Lee J-H, Kim S-I, Cho MH, Lee J (2014) Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus. Appl Microbiol Biotechnol 98:9447–9457.  https://doi.org/10.1007/s00253-014-5903-4 CrossRefPubMedGoogle Scholar
  56. Lee J, Lee I, Nam J, Hwang DS, Yeon K-M, Kim J (2017) Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching. ACS Appl Mater Interfaces 9:15424–15432.  https://doi.org/10.1021/acsami.7b01528 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Li Z, Nair SK (2012) Quorum sensing: how bacteria can coordinate activity and synchronize their response to external signals? Protein Sci 21:1403–1417.  https://doi.org/10.1002/pro.2132 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lin YH, Xu J-L, Hu J, Wang L-H, Ong SL, Leadbetter JR, Zhang L-H (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860.  https://doi.org/10.1046/j.1365-2958.2003.03351.x CrossRefPubMedGoogle Scholar
  59. Loughlin CTO, Miller LC, Siryaporn A, Drescher K, Semmelhack MF (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 110:17981–17986.  https://doi.org/10.1073/pnas.1316981110 CrossRefGoogle Scholar
  60. Miller KP, Wang L, Chen Y-P, Pellechia PJ, Benicewicz BC, Decho AW (2015) Engineering nanoparticles to silence bacterial communication. Front Microbiol 6:189.  https://doi.org/10.3389/fmicb.2015.00189 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Miquel S, Lagrafeuille R, Souweine B, Forestier C (2016) Anti-biofilm activity as a health issue. Front Microbiol 7:592.  https://doi.org/10.3389/fmicb.2016.00592 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Monnet V, Juillard V, Gardan R (2016) Peptide conversations in Gram-positive bacteria. Crit Rev Microbiol 42:339–351.  https://doi.org/10.3109/1040841X.2014.948804 CrossRefPubMedGoogle Scholar
  63. Montebello NA, Brecht RM, Turner DR, Ghali M, Pu X, Nagarajan R (2014) Acyl-ACP substrate recognition in Burkholderia mallei BmaI1 acyl-homoserine lactone synthase. ACS Biochem 53:6231–6242.  https://doi.org/10.1021/bi5009529 CrossRefGoogle Scholar
  64. Munita JM, Arias CA (2016) Mechanism of antibiotic resistance. Microbiol Spectr 4:1–37.  https://doi.org/10.1128/microbiolspec.VMBF-0016-2015 CrossRefGoogle Scholar
  65. Nafee N, Husari A, Maurer CK, Lu C, de Rossi C, Steinbach A, Hartmann RW, Lehr C-M, Schneider M (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 192:131–140.  https://doi.org/10.1016/j.jconrel.2014.06.055 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Packiavathy AISV, Priya S, Karutha Pandian SK, Ravi AV (2014) Inhibition of biofilm development of uropathogens by curcumin – an anti-quorum sensing agent from Curcuma longa. Food Chem 148:453–460.  https://doi.org/10.1016/j.foodchem.2012.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Paczkowski JE, Mukherjee S, McCready AR, Cong J-P, Aquino CJ, Kim H, Henke BR, Smith CD, Bassler BL (2017) Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem 292:4064–4076.  https://doi.org/10.1074/jbc.M116.770552 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Papenfort K, Bassler B (2015) Quorum-sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 510:84–91.  https://doi.org/10.1038/nrmicro.2016.89 CrossRefGoogle Scholar
  69. Park J, Jagasia R, Kaufmann GF, Mathison JC, Ruiz DI, Moss JA, Meijler MM, Ulevitch RJ, Janda KD (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127.  https://doi.org/10.1016/j.chembiol.2007.08.013 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334.  https://doi.org/10.1099/jmm.0.000032 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Pollitt EJG, West SA, Crusz SA, Burton-Chellew MN, Diggle SP (2014) Cooperation, quorum sensing, and evolution of virulence in Staphylococcus aureus. Infect Immun 82:1045–1051.  https://doi.org/10.1128/IAI.01216-13 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Pustelny C, Albers A, Buldt-Karentzopoulos K, Parschat K, Chhabra SR, Camara M, Williams P, Fetzner S (2009) Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 16:1259–1267.  https://doi.org/10.1016/j.chembiol.2009.11.013 CrossRefPubMedGoogle Scholar
  73. Rampioni G, Leoni L, Williams P (2014) The art of antibacterial warfare: deception through interference with quorum sensing-mediated communication. Bioorg Chem 55:60–68.  https://doi.org/10.1016/j.bioorg.2014.04.005 CrossRefPubMedGoogle Scholar
  74. Reuter K, Steinbach A, Helms V (2016) Interfering with bacterial quorum sensing. Perspect Medicin Chem 8:1–15.  https://doi.org/10.4137/PMC.S13209 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Rezzonico F, Smits THM, Duffy B (2012) Detection of AI-2 receptors in genomes of Enterobacteriaceae suggests a role of type-2 quorum sensing in closed ecosystems. Sensors (Switzerland) 12:6645–6665.  https://doi.org/10.3390/s120506645 CrossRefGoogle Scholar
  76. Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–561.  https://doi.org/10.1111/joim.12004 CrossRefPubMedGoogle Scholar
  77. Scott R, Hasty J (2016) Quorum sensing communication modules for microbial consortia. ACS Synth Biol 5:969–977.  https://doi.org/10.1021/acssynbio.5b00286 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719.  https://doi.org/10.1038/srep13719 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Singh BN, Prateeksha, Upreti DK, Singh BR, Defoirdt T, Gupta VK, De Souza AO, Singh HB, Barreira JCM, Ferreira ICFR, Vahabi K (2017) Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol 37:525–540.  https://doi.org/10.1080/07388551.2016.1199010 CrossRefPubMedGoogle Scholar
  80. Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, DeLeo FR, Otto M, Cheung AL, Edwards BS, Sklar LA, Horswill AR, Hall PR, Gresham HD (2014) Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog 10:e1004174.  https://doi.org/10.1371/journal.ppat.1004174 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tan CH, Koh KS, Xie C, Zhang J, Tan XH, Lee GP, Zhou Y, Ng WJ, Rice SA, Kjelleberg S (2015) Community quorum sensing signalling and quenching: microbial granular biofilm assembly. NPJ Biofilms Microbiomes 1:15006.  https://doi.org/10.1038/npjbiofilms.2015.6 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tang K, Su Y, Brackman G, Cui F, Zhang Y, Shi X, Coenye T, Zhang X-H (2015) MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol 81:774–782.  https://doi.org/10.1128/AEM.02805-14 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J (2013) Innovative strategies to overcome biofilm resistance. Biomed Res Int 13:150653.  https://doi.org/10.1155/2013/150653 CrossRefGoogle Scholar
  84. Tay SB, Wen Yew WS (2013) Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int J Mol Sci 14:16570–16599.  https://doi.org/10.3390/ijms140816570 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tong SYC, Chen LF, Fowler VG Jr (2013) Colonization, pathogenicity, host susceptibility and therapeutics for Staphylococcus aureus: what is the clinical relevance? Semin Immunopathol 34:185–200.  https://doi.org/10.1007/s00281-011-0300-x CrossRefGoogle Scholar
  86. Uroz S, Chhabra SR, Camara M, Williams P, Oger P, Dessaux Y (2005) N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322.  https://doi.org/10.1099/mic.0.27961-0 CrossRefPubMedGoogle Scholar
  87. Vinoj G, Vaseeharan B, Thomas S, Spiers AJ, Shanthi S (2014) Quorum-quenching activity of the AHL-lactonase from Bacillus licheniformis DAHB1 inhibits Vibrio biofilm formation in vitro and reduces shrimp intestinal colonisation and mortality. Mar Biotechnol 16:707–715.  https://doi.org/10.1007/s10126-014-9585-9 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Vinoj G, Patib R, Sonawaneb A, Baskaralingam V (2015) In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrob Agents Chemother 59:763–771.  https://doi.org/10.1128/AAC.03047-14 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Weiland-Bräuer N, Kisch MJ, Pinnow N, Liese A, Schmitz RA (2016) Highly effective inhibition of biofilm formation by the first metagenome-derived AI-2 quenching enzyme. Front Microbiol 7:1098.  https://doi.org/10.3389/fmicb.2016.01098 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Xue T, Zhao L, Sun B (2012) LuxS/AI-2 system is involved in antibiotic susceptibility and autolysis in Staphylococcus aureus NCTC 8325. Int J Antimicrob Agents 41:85–89.  http://dx.doi.org/10.1016/j.ijantimicag.2012.08.016 CrossRefPubMedGoogle Scholar
  91. Yang YX, Xu Z-H, Zhang Y-Q, Tian J, Weng L-X, Wang L-H (2012) A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. J Microbiol 50:987–993.  https://doi.org/10.1007/s12275-012-2149-7 CrossRefPubMedGoogle Scholar
  92. Yerushalmi SM, Buck ME, Lynn DM, Gabriel N, Meijler MM (2013) Multivalent alteration of quorum sensing in Staphylococcus aureus. Chem Commun 49:5177–5179.  https://doi.org/10.1039/c3cc41645c CrossRefGoogle Scholar
  93. Zang T, Lee BK, Cannonb LM, Ritterb KA, Daia S, Renc D, Wood TK, Zhou ZS (2010) A naturally occurring brominated furanone covalently modifies and inactivates LuxS. Bioorg Med Chem Lett 19:6200–6204.  https://doi.org/10.1016/j.bmcl.2009.08.095 CrossRefGoogle Scholar
  94. Zhang Y, Brackman G, Coenye T (2017) Pitfalls associated with evaluating enzymatic quorum quenching activity: the case of MomL and its effect on Pseudomonas aeruginosa and Acinetobacter baumannii biofilms. PeerJ 5:e3251.  https://doi.org/10.7717/peerj.3251 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Aleksandra Ivanova
    • 1
  • Kristina Ivanova
    • 1
  • Tzanko Tzanov
    • 1
  1. 1.Group of Molecular and Industrial Biotechnology, Department of Chemical EngineeringUniversitat Politècnica de CatalunyaTerrassaSpain

Personalised recommendations