General Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Luminescent materials play a vital role in our lives. There has been significant progress in the development of inorganic and organic phosphors. Assembled lanthanide [Ln(III)] coordination compounds have attracted much attention as promising candidates for luminescent materials due to their unique photophysical properties arising from f-f transitions. In this thesis, the relationships between assembled Ln(III) coordination compounds and photophysical, thermal, and mechanical properties are focused on for the development of novel luminescent materials. The molecular designs of organic bridging ligands to control the assembled structures and physical properties of Ln(III) coordination compounds are shown.

Keywords

Luminescence Lanthanide Complex Coordination polymer 

References

  1. 1.
    E.F. Schubert, J.K. Kim, Science 308, 1274–1278 (2005)CrossRefGoogle Scholar
  2. 2.
    T.P. Yoon, M.A. Ischay, J.N. Du, Nat. Chem. 2, 527–532 (2010)CrossRefGoogle Scholar
  3. 3.
    F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photonics 4, 611–622 (2010)CrossRefGoogle Scholar
  4. 4.
    N. Holonyak, S.F. Bevacqua, Appl. Phys. Lett. 1, 82–83 (1962)CrossRefGoogle Scholar
  5. 5.
    S. Nakamura, J. Cryst. Growth 145, 911–917 (1994)CrossRefGoogle Scholar
  6. 6.
    S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687–1689 (1994)CrossRefGoogle Scholar
  7. 7.
    H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 28, L2112–L2114 (1989)CrossRefGoogle Scholar
  8. 8.
    I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, J. Lumin. 48–49, 666–670 (1991)CrossRefGoogle Scholar
  9. 9.
    C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl. Phys. 90, 5048–5051 (2001)CrossRefGoogle Scholar
  10. 10.
    J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama, Appl. Phys. Lett. 65, 2124–2126 (1994)CrossRefGoogle Scholar
  11. 11.
    J. Kido, K. Nagai, Y. Ohashi, Chem. Lett. 19, 657–660 (1990)Google Scholar
  12. 12.
    C.D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, Nature 421, 829–833 (2003)CrossRefGoogle Scholar
  13. 13.
    K. Kuriki, Y. Koike, Y. Okamoto, Chem. Rev. 102, 2347–2356 (2002)CrossRefGoogle Scholar
  14. 14.
    J.M. Costa-Fernández, R. Pereiro, A. Sanz-Medel, Trends Anal. Chem. 25, 207–218 (2006)CrossRefGoogle Scholar
  15. 15.
    M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Nature 395, 151–154 (1998)CrossRefGoogle Scholar
  16. 16.
    J.M. Phillips, M.E. Coltrin, M.H. Crawford, A.J. Fischer, M.R. Krames, R. Mueller-Mach, G.O. Mueller, Y. Ohno, L.E.S. Rohwer, J.A. Simmons, J.Y. Tsao, Laser Photonics Rev. 1, 307–333 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Pust, V. Weiler, C. Hecht, A. Tücks, A.S. Wochnik, A.-K. Henß, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Nat. Mater. 13, 891–896 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Joblin, F. Salama, L. Allamandola, J. Chem. Phys. 110, 7287–7297 (1999)CrossRefGoogle Scholar
  19. 19.
    J. Donovalova, M. Cigan, H. Stankovicova, J. Gaspar, M. Danko, A. Gaplovsky, P. Hrdlovic, Molecules 17, 3259–3276 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Hara, Z.S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-Oh, C. Kasada, A. Shinpo, S. Suga, J. Phys. Chem. B 109, 15476–15482 (2005)CrossRefGoogle Scholar
  21. 21.
    M.-C. Choi, Y. Kim, C.-S. Ha, Prog. Polym. Sci. 33, 581–630 (2008)CrossRefGoogle Scholar
  22. 22.
    M.H. Park, T.H. Han, Y.H. Kim, S.H. Jeong, Y. Lee, H.K. Seo, H. Cho, T.W. Lee, J. Photonics Energy 5 (2015)Google Scholar
  23. 23.
    T.H. Han, Y. Lee, M.R. Choi, S.H. Woo, S.H. Bae, B.H. Hong, J.H. Ahn, T.W. Lee, Nat. Photonics 6, 105–110 (2012)CrossRefGoogle Scholar
  24. 24.
    M.D. Ward, P.R. Raithby, Chem. Soc. Rev. 42, 1619–1636 (2013)CrossRefGoogle Scholar
  25. 25.
    S.V. Eliseeva, J.C.G. Bünzli, Chem. Soc. Rev. 39, 189–227 (2010)CrossRefGoogle Scholar
  26. 26.
    J.-C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34, 1048–1077 (2005)CrossRefGoogle Scholar
  27. 27.
    K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)CrossRefGoogle Scholar
  28. 28.
    S.J. Butler, D. Parker, Chem. Soc. Rev. 42, 1652–1666 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Petoud, G. Muller, E.G. Moore, J. Xu, J. Sokolnicki, J.P. Riehl, U.N. Le, S.M. Cohen, K.N. Raymond, J. Am. Chem. Soc. 129, 77–83 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Petoud, S.M. Cohen, J.-C.G. Bünzli, K.N. Raymond, J. Am. Chem. Soc. 125, 13324–13325 (2003)CrossRefGoogle Scholar
  31. 31.
    J.-C.G. Bünzli, S. Comby, A.S. Chauvin, C.D.B. Vandevyver, J. Rare Earths 25, 257–274 (2007)CrossRefGoogle Scholar
  32. 32.
    J.-C.G. Bünzli, Chem. Rev. 110, 2729–2755 (2010)CrossRefGoogle Scholar
  33. 33.
    A. de Bettencourt-Dias, Introduction to lanthanide ion luminescence, in Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials (Wiley, 2014), pp. 1–48Google Scholar
  34. 34.
    A. de Bettencourt-Dias, Dalton Trans. 2229–2241 (2007)Google Scholar
  35. 35.
    S.V. Eliseeva, M. Ryazanov, F. Gumy, S.I. Troyanov, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, Eur. J. Inorg. Chem. 4809–4820 (2006)Google Scholar
  36. 36.
    Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, G.H. Sigel, Opt. Lett. 16, 1747–1749 (1991)CrossRefGoogle Scholar
  37. 37.
    L.H. Slooff, A. Polman, M.P.O. Wolbers, F. van Veggel, D.N. Reinhoudt, J.W. Hofstraat, J. Appl. Phys. 83, 497–503 (1998)CrossRefGoogle Scholar
  38. 38.
    L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 254, 487–505 (2010)CrossRefGoogle Scholar
  39. 39.
    S.I. Weissman, J. Chem. Phys. 10, 214–217 (1942)CrossRefGoogle Scholar
  40. 40.
    G.A. Crosby, Mol. Cryst. 1, 37–81 (1966)CrossRefGoogle Scholar
  41. 41.
    G.A. Crosby, R.E. Whan, J. Chem. Phys. 36, 863–865 (1962)CrossRefGoogle Scholar
  42. 42.
    G.A. Crosby, R.E. Whan, R.M. Alire, J. Chem. Phys. 34, 743–748 (1961)CrossRefGoogle Scholar
  43. 43.
    K. Binnemans, Chapter 225—Rare-earth beta-diketonates, in Handbook on the Physics and Chemistry of Rare Earths, ed. by J.-C.G.Bünzli, K.A. Gschneidner, K.P. Vitalij (Elsevier, 2005), pp. 107–272Google Scholar
  44. 44.
    A. de Bettencourt-Dias, S. Bauer, S. Viswanathan, B.C. Maull, A.M. Ako, Dalton Trans. 41, 11212–11218 (2012)CrossRefGoogle Scholar
  45. 45.
    E.S. Andreiadis, N. Gauthier, D. Imbert, R. Demadrille, J. Pécaut, M. Mazzanti, Inorg. Chem. 52, 14382–14390 (2013)CrossRefGoogle Scholar
  46. 46.
    S.V. Eliseeva, D.N. Pleshkov, K.A. Lyssenko, L.S. Lepnev, J.C.G. Bünzli, N.P. Kuzminat, Inorg. Chem. 49, 9300–9311 (2010)CrossRefGoogle Scholar
  47. 47.
    N.B.D. Lima, S.M.C. Goncalves, S.A. Junior, A.M. Simas, Sci. Rep. 3 (2013)Google Scholar
  48. 48.
    S.V. Eliseeva, O.V. Kotova, F. Gumy, S.N. Semenov, V.G. Kessler, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, J. Phys. Chem. A 112, 3614–3626 (2008)CrossRefGoogle Scholar
  49. 49.
    A. de Bettencourt-Dias, P.S. Barber, S. Viswanathan, D.T. de Lill, A. Rollett, G. Ling, S. Altun, Inorg. Chem. 49, 8848–8861 (2010)CrossRefGoogle Scholar
  50. 50.
    A. de Bettencourt-Dias, P.S. Barber, S. Bauer, J. Am. Chem. Soc. 134, 6987–6994 (2012)CrossRefGoogle Scholar
  51. 51.
    A. de Bettencourt-Dias, S. Viswanathan, A. Rollett, J. Am. Chem. Soc. 129, 15436–15437 (2007)CrossRefGoogle Scholar
  52. 52.
    B.G. Wybourne, Mol. Phys. 101, 899–901 (2003)CrossRefGoogle Scholar
  53. 53.
    B.R. Judd, Phys. Rev. 127, 750–761 (1962)CrossRefGoogle Scholar
  54. 54.
    G.S. Ofelt, J. Chem. Phys. 37, 511–520 (1962)CrossRefGoogle Scholar
  55. 55.
    S.F. Mason, R.D. Peacock, B. Stewart, Chem. Phys. Lett. 29, 149–153 (1974)CrossRefGoogle Scholar
  56. 56.
    A.F. Kirby, F.S. Richardson, J. Phys. Chem. 87, 2544–2556 (1983)CrossRefGoogle Scholar
  57. 57.
    M. Montalti, L. Prodi, N. Zaccheroni, L. Charbonnière, L. Douce, R. Ziessel, J. Am. Chem. Soc. 123, 12694–12695 (2001)CrossRefGoogle Scholar
  58. 58.
    K. Driesen, P. Lenaerts, K. Binnemans, C. Gorller-Walrand, Phys. Chem. Chem. Phys. 4, 552–555 (2002)CrossRefGoogle Scholar
  59. 59.
    T. Harada, Y. Nakano, M. Fujiki, M. Naito, T. Kawai, Y. Hasegawa, Inorg. Chem. 48, 11242–11250 (2009)CrossRefGoogle Scholar
  60. 60.
    T. Harada, H. Tsumatori, K. Nishiyama, J. Yuasa, Y. Hasegawa, T. Kawai, Inorg. Chem. 51, 6476–6485 (2012)CrossRefGoogle Scholar
  61. 61.
    K. Miyata, T. Nakagawa, R. Kawakami, Y. Kita, K. Sugimoto, T. Nakashima, T. Harada, T. Kawai, Y. Hasegawa, Chem. Eur. J. 17, 521–528 (2011)CrossRefGoogle Scholar
  62. 62.
    K. Miyata, Y. Hasegawa, Y. Kuramochi, T. Nakagawa, T. Yokoo, T. Kawai, Eur. J. Inorg. Chem. 4777–4785 (2009)Google Scholar
  63. 63.
    K. Yanagisawa, T. Nakanishi, Y. Kitagawa, T. Seki, T. Akama, M. Kobayashi, T. Taketsugu, H. Ito, K. Fushimi, Y. Hasegawa, Eur. J. Inorg. Chem. 4769–4774 (2015)Google Scholar
  64. 64.
    K. Yanagisawa, Y. Kitagawa, T. Nakanishi, T. Akama, M. Kobayashi, T. Seki, K. Fushimi, H. Ito, T. Taketsugu, Y. Hasegawa, Eur. J. Inorg. Chem. 3843–3848 (2017)Google Scholar
  65. 65.
    Y. Hasegawa, T. Ohkubo, K. Sogabe, Y. Kawamura, Y. Wada, N. Nakashima, S. Yanagida, Angew. Chem. Int. Ed. 39, 357–360 (2000)CrossRefGoogle Scholar
  66. 66.
    P.B. Glover, A.P. Bassett, P. Nockemann, B.M. Kariuki, R. Van Deun, Z. Pikramenou, Chem. Eur. J. 13, 6308–6320 (2007)CrossRefGoogle Scholar
  67. 67.
    R. Van Deun, P. Nockemann, C. Gorller-Walrand, K. Binnemans, Chem. Phys. Lett. 397, 447–450 (2004)CrossRefGoogle Scholar
  68. 68.
    M. Burnworth, L.M. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer, G.L. Fiore, S.J. Rowan, C. Weder, Nature 472, 334–U230 (2011)Google Scholar
  69. 69.
    H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 974 (2013)CrossRefGoogle Scholar
  70. 70.
    A.V. Zhukhovitskiy, M.Z. Zhong, E.G. Keeler, V.K. Michaelis, J.E.P. Sun, M.J.A. Hore, D.J. Pochan, R.G. Griffin, A.P. Willard, J.A. Johnson, Nat. Chem. 8, 33–41 (2016)CrossRefGoogle Scholar
  71. 71.
    T. Fukino, H. Joo, Y. Hisada, M. Obana, H. Yamagishi, T. Hikima, M. Takata, N. Fujita, T. Aida, Science 344, 499–504 (2014)CrossRefGoogle Scholar
  72. 72.
    A. Tsuda, Y. Nagamine, R. Watanabe, Y. Nagatani, N. Ishii, T. Aida, Nat. Chem. 2, 977–983 (2010)CrossRefGoogle Scholar
  73. 73.
    M. Fujita, J. Yazaki, K. Ogura, J. Am. Chem. Soc. 112, 5645–5647 (1990)CrossRefGoogle Scholar
  74. 74.
    Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 3, 349–358 (2011)CrossRefGoogle Scholar
  75. 75.
    T.R. Cook, Y.R. Zheng, P.J. Stang, Chem. Rev. 113, 734–777 (2013)CrossRefGoogle Scholar
  76. 76.
    S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43, 2334–2375 (2004)CrossRefGoogle Scholar
  77. 77.
    A. Gallego, O. Castillo, C.J. Gomez-Garcia, F. Zamora, S. Delgado, Inorg. Chem. 51, 718–727 (2012)CrossRefGoogle Scholar
  78. 78.
    M.I.J. Polson, E.A. Medlycott, G.S. Hanan, L. Mikelsons, N.L. Taylor, M. Watanabe, Y. Tanaka, F. Loiseau, R. Passalacqua, S. Campagna, Chem. Eur. J. 10, 3640–3648 (2004)CrossRefGoogle Scholar
  79. 79.
    F. Puntoriero, S. Campagna, A.M. Stadler, J.M. Lehn, Coord. Chem. Rev. 252, 2480–2492 (2008)CrossRefGoogle Scholar
  80. 80.
    A. Rana, S.K. Jana, T. Pal, H. Puschmann, E. Zangrando, S. Dalai, J. Solid State Chem. 216, 49–55 (2014)CrossRefGoogle Scholar
  81. 81.
    J.N. Hao, B. Yan, J. Mater. Chem. A 3, 4788–4792 (2015)CrossRefGoogle Scholar
  82. 82.
    L.N. Zhang, A.L. Liu, Y.X. Liu, J.X. Shen, C.X. Du, H.W. Hou, Inorg. Chem. Commun. 56, 137–140 (2015)CrossRefGoogle Scholar
  83. 83.
    S.S. Shang, J.W. Zhao, L.J. Chen, Y.Y. Li, J.L. Zhang, Y.Z. Li, J.Y. Niu, J. Solid State Chem. 196, 29–39 (2012)CrossRefGoogle Scholar
  84. 84.
    Y.X. Guo, X. Feng, T.Y. Han, S. Wang, Z.G. Lin, Y.P. Dong, B. Wang, J. Am. Chem. Soc. 136, 15485–15488 (2014)CrossRefGoogle Scholar
  85. 85.
    R. Medishetty, R. Tandiana, L.L. Koh, J. Vittal, Chem. Eur. J. 20, 1231–1236 (2014)CrossRefGoogle Scholar
  86. 86.
    Y. Hasegawa, T. Nakanishi, RSC Adv. 5, 338–353 (2015)CrossRefGoogle Scholar
  87. 87.
    J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Chem. Soc. Rev. 40, 926–940 (2011)CrossRefGoogle Scholar
  88. 88.
    A.R. Ramya, D. Sharma, S. Natarajan, M.L.P. Reddy, Inorg. Chem. 51, 8818–8826 (2012)CrossRefGoogle Scholar
  89. 89.
    K. Miyata, T. Ohba, A. Kobayashi, M. Kato, T. Nakanishi, K. Fushimi, Y. Hasegawa, ChemPlusChem 77, 277–280 (2012)CrossRefGoogle Scholar
  90. 90.
    K.A. White, D.A. Chengelis, K.A. Gogick, J. Stehman, N.L. Rosi, S. Petoud, J. Am. Chem. Soc. 131, 18069–18071 (2009)CrossRefGoogle Scholar
  91. 91.
    J.Y. An, C.M. Shade, D.A. Chengelis-Czegan, S. Petoud, N.L. Rosi, J. Am. Chem. Soc. 133, 1220–1223 (2011)CrossRefGoogle Scholar
  92. 92.
    Y.J. Cui, H. Xu, Y.F. Yue, Z.Y. Guo, J.C. Yu, Z.X. Chen, J.K. Gao, Y. Yang, G.D. Qian, B.L. Chen, J. Am. Chem. Soc. 134, 3979–3982 (2012)CrossRefGoogle Scholar
  93. 93.
    X.T. Rao, T. Song, J.K. Gao, Y.J. Cui, Y. Yang, C.D. Wu, B.L. Chen, G.D. Qian, J. Am. Chem. Soc. 135, 15559–15564 (2013)CrossRefGoogle Scholar
  94. 94.
    Y.J. Cui, B.L. Chen, G.D. Qian, Coord. Chem. Rev. 273, 76–86 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hokkaido UniversitySapporo, HokkaidoJapan

Personalised recommendations