Advertisement

Neural Generators of the N2 Component for Abstinent Heroin Addicts in a Dot-Probe Task

  • Hongqian Li
  • Qinglin Zhao
  • Bin Hu
  • Yu Zhou
  • Quanying Liu
Conference paper
Part of the Advances in Cognitive Neurodynamics book series (ICCN)

Abstract

Target-elicited N2 component of event-related potential (ERP) has been considered to be involved in target detection in the attentional processes. We aim to link the target-elicited N2 in a dot-probe task and the drug-related attention bias in heroin dependence and further estimate the brain regions involved in the generation of the target-elicited N2. We recorded 64-channel electroencephalograms (EEG) from 17 abstinent heroin addicts (AHAs) and 17 healthy controls (HCs) during the dot-probe visual task. Individual N2 sources were localized using exact low-resolution electromagnetic tomography (eLORETA). Compared to HCs, AHAs generated larger N2 amplitude in both congruent and incongruent conditions, suggesting that target detection processing in AHAs might require more attention resources. Moreover, N2 component was mainly generated in the Brodmann areas (BAs) 7, 23, 24, 31, 30, 32, and 40, implying that the frontoparietal cortex played a critical role in target detection processes.

Keywords

ERP N2 component Target detection eLORETA Dot-probe task 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (No.2014CB744600), the Program of International S&T Cooperation of MOST (No.2013DFA11140), the National Natural Science Foundation of China (grant No.61210010, No.61632014), the National key foundation for developing scientific instruments (No.61627808), and the Program of Beijing Municipal Science and Technology Commission (No.Z171100000117005).

Reference

  1. 1.
    Bocquillon, P., et al.: The spatiotemporal dynamics of early attention processes: a high-resolution electroencephalographic study of N2 subcomponent sources. Neuroscience. 271, 9–22 (2014)CrossRefPubMedGoogle Scholar
  2. 2.
    Kastner, S., Ungerleider, L.G.: Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    Berg, I.V.D.: Cue-reactivity and Attentional Bias in Smokers and Non-smokers: an ERP study. Erasmus University, Rotterdam (2007)Google Scholar
  4. 4.
    Hoeksma, M.R., et al.: Abnormal selective attention normalizes P3 Amplitudes in PDD. J. Autism Dev. Disord. 36, 643–654 (2006)CrossRefPubMedGoogle Scholar
  5. 5.
    Azizian, A., et al.: Electrophysiological correlates of categorization: P300 amplitude as index of target similarity. Biol. Psychol. 71, 278–288 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    Jr, R.J., Donchin, E.: P300 and Stimulus Categorization: two plus one is not so different from one plus one. Psychophysiology. 17, 167–178 (1980)CrossRefGoogle Scholar
  7. 7.
    Näätänen, R., Picton, T.W.: N2 and automatic versus controlled processes. Electroencephalogr. Clin. Neurophysiol. 38, 169–186 (1986)Google Scholar
  8. 8.
    Folstein, J.R., Petten, C.V.: Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology. 45, 152–170 (2008)CrossRefPubMedGoogle Scholar
  9. 9.
    Anderer, P., et al.: Non-invasive localization of P300 sources in normal aging and age-associated memory impairment. Neurobiol. Aging. 24, 463–479 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    Kropotov, J.D.P., Decomposing, V.A.: N2 NOGO wave of event-related potentials into independent components. Neuroreport. 20, 1592 (2009)CrossRefPubMedGoogle Scholar
  11. 11.
    Parvaz, M.A., et al.: Neuroimaging for drug addiction and related behaviors. Rev. Neurosci. 22, 609–624 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–12 (2002)PubMedGoogle Scholar
  13. 13.
    Pascual-Marqui, R.D., et al.: Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 3768–3784 (1952)CrossRefGoogle Scholar
  14. 14.
    Thai, N., Taberthomas, B.C., Pérezedgar, K.E.: Neural correlates of attention biases, behavioral inhibition, and social anxiety in children: an ERP study. Dev. Cogn. Neurosci. 19, 200 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dillen, K.N., et al.: Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease. Neurobiol. Aging. 44, 114 (2016)CrossRefPubMedGoogle Scholar
  16. 16.
    Braver, T.S., et al.: Anterior Cingulate Cortex and Response Conflict: effects of Frequency, Inhibition and Errors. Cereb. Cortex. 11, 825–836 (2001)CrossRefPubMedGoogle Scholar
  17. 17.
    Carter, C.S., Botvinick, M.M., Cohen, J.D.: The contribution of the anterior cingulate cortex to executive processes in cognition. Rev. Neurosci. 10, 49 (1999)CrossRefPubMedGoogle Scholar
  18. 18.
    Leech, R., et al.: Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224 (2011)CrossRefPubMedGoogle Scholar
  19. 19.
    Margulies, D.S., et al.: Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl. Acad. Sci. U. S. A. 106, 20069–20074 (2009)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hongqian Li
    • 1
  • Qinglin Zhao
    • 1
  • Bin Hu
    • 1
  • Yu Zhou
    • 1
  • Quanying Liu
    • 2
  1. 1.Laboratory of Ubiquitous Awareness and Intelligent SolutionsLanzhou UniversityLanzhouChina
  2. 2.Department of Computing and Mathematical SciencesCalifornia Institute of TechnologyPasadenUSA

Personalised recommendations