A Novel Private Information Retrieval Technique for Private DNS Resolution

  • Radhakrishna BhatEmail author
  • N. R. Sunitha
Part of the Studies in Computational Intelligence book series (SCI, volume 771)


Recently, advancements in various analytical techniques have enabled to encourage the unethical business to violate user privacy and market the analytical results. Existing user privacy-preserving techniques based on intractability assumptions have proved to offer only conditional user privacy. Thus, interest in perfect (i.e., unconditional) user privacy-preserving information retrieval techniques are receiving enormous attention. We have successfully constructed a single database perfect privacy-preserving information retrieval technique using Private Information Retrieval (PIR). We have proposed a novel perfect privacy-preserving PIR technique in a single database setting with non-trivial communication cost for private Domain Name System (DNS) resolution. We have further extended the proposed scheme to a computationally efficient scheme by varying the security parameter without losing the level of user privacy.


Private information retrieval Quadratic residuosity Perfect privacy Private DNS resolution Fully qualified domain name 


  1. 1.
    Benny, C., G. Niv, and N. Moni. 1998. Private information retrieval by keywords. Cryptology ePrint Archive, Report 1998/003.
  2. 2.
    Cachin, C., S. Micali, and M. Stadler. 1999. In Computationally private information retrieval with polylogarithmic communication, 402–414. Berlin: Springer.CrossRefGoogle Scholar
  3. 3.
    Cachin, C., S. Micali, M. Stadler. 1999. Computationally private information retrieval with polylogarithmic communication. In Proceedings of 17-th theory and application of cryptographic techniques. EUROCRYPT’99, 402–414. Berlin: Springer.CrossRefGoogle Scholar
  4. 4.
    Chang, Y.C. 2004. Single database private information retrieval with logarithmic communication, 50–61. Berlin: Springer.CrossRefGoogle Scholar
  5. 5.
    Chor, B., N. Gilboa. 1997. Computationally private information retrieval (extended abstract). In Proceedings of 29-th STOC. STOC ’97, 304–313. ACM.Google Scholar
  6. 6.
    Chor, B., O. Goldreich, E. Kushilevitz, and M. Sudan. 1995. Private information retrieval. In Proceedings of the 36-th FOCS. FOCS ’95, 41–50. IEEE Computer Society.Google Scholar
  7. 7.
    Freeman, D.M., O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. 2009. More constructions of lossy and correlation-secure trapdoor functions. Cryptology ePrint Archive, Report 2009/590.
  8. 8.
    Gentry, C., and Z. Ramzan. 2005. Single-database private information retrieval with constant communication rate. In Proceedings of 32\({nd}\) ICALP. ICALP’05, 803–815. Berlin: Springer.Google Scholar
  9. 9.
    Goldwasser, S., and S. Micali. 1984. Probabilistic encryption. Journal of computer and system sciences 28 (2): 270–299.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Groth, J., A. Kiayias, and H. Lipmaa. 2010. Multi-query computationally-private information retrieval with constant communication rate. In Proceedings of 13-th PKC. PKC’10, 107–123. Berlin: Springer.CrossRefGoogle Scholar
  11. 11.
    Ishai, Y., E. Kushilevitz, R. Ostrovsky, A. Sahai. 2006. Cryptography from anonymity. In Proceedings of 47-th FOCS. FOCS ’06, 239–248. IEEE Computer Society.Google Scholar
  12. 12.
    Kaiser, D., and M. Waldvogel. 2014. Efficient privacy preserving multicast dns service discovery. In 2014 IEEE international conference on high performance computing and communications; 2014 IEEE 6th international symposium on cyberspace safety and security; 2014 IEEE 11th international conference on embedded software and system (HPCC,CSS,ICESS), 1229–1236.Google Scholar
  13. 13.
    Kang, A.R., and A. Mohaisen. 2016. Assessing DNS privacy under partial deployment of special-use domain names. In 2016 IEEE conference on communications and network security (CNS), 358–359.Google Scholar
  14. 14.
    Kushilevitz, E., and R. Ostrovsky. 1997. Replication is not needed: Single database, computationally-private information retrieval. In Proceedings of 38-th FOCS. FOCS ’97, 364. IEEE Computer Society.Google Scholar
  15. 15.
    Kushilevitz, E., and R. Ostrovsky. 2000. One-way trapdoor permutations are sufficient for non-trivial single-server private information retrieval. In Proceedings of 19-th Theory and Application of Cryptographic Techniques. EUROCRYPT’00, 104–121. Berlin: Springer.CrossRefGoogle Scholar
  16. 16.
    Lipmaa, H. 2010. First cpir protocol with data-dependent computation. In Proceedings of 12-th information security and cryptology. ICISC’09, 193–210. Berlin: Springer.CrossRefGoogle Scholar
  17. 17.
    Melchor, C.A., and P. Gaborit. 2007. A lattice-based computationally-efficient private information retrieval protocol.Google Scholar
  18. 18.
    Paillier, P. 1999. In Public-key cryptosystems based on composite degree residuosity classes, 223–238. Berlin: Springer.Google Scholar
  19. 19.
    Radhakrishna, B., and N. Sunitha. 2014. Optar: Optional pir based trusted address resolution for dns. IJACEN 2 (8): 23–28.Google Scholar
  20. 20.
    Trostle, J., and A. Parrish. 2011. Efficient computationally private information retrieval from anonymity or trapdoor groups. In Proceedings of 13-th ISC. ISC’10,114–128. Berlin: Springer.Google Scholar
  21. 21.
    Yuchi, X., G. Geng, Z. Yan, and X. Lee. 2017. Towards tackling privacy disclosure issues in domain name service. In 2017 IFIP/IEEE symposium on integrated network and service management (IM), 813–816.Google Scholar
  22. 22.
    Zhao, F., Y. Hori, and K. Sakurai. 2007. Analysis of privacy disclosure in dns query. In 2007 international conference on multimedia and ubiquitous engineering (MUE’07), 952–957.Google Scholar
  23. 23.
    Zhao, F., Y. Hori, and K. Sakurai. 2007. Two-servers pir based dns query scheme with privacy-preserving. In The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), 299–302.Google Scholar
  24. 24.
    Zhu, L., Z. Hu, J. Heidemann, D. Wessels, A. Mankin, and N. Somaiya. 2015. Connection-oriented DNS to improve privacy and security. In 2015 IEEE symposium on security and privacy, 171–186.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Siddaganga Institute of TechnologyTumakuruIndia

Personalised recommendations