MicroRNA and Its Application in Asthma Studies

  • Fang Chen
  • Yan-Jing Qian
  • Jia-Ying Zhang
  • Fang Wang
  • Ting-Ting Xia
Part of the Translational Bioinformatics book series (TRBIO, volume 12)


Asthma is a respiratory disease that is closely associated with genetic and environmental conditions, and miRNA is known as the key regulator of epigenetics. This is a kind of small non-coding RNA, which is involved in the translation process of proteins indirectly, controlling the behavior of the body. Recent studies have found that a large number of asthmatic patients have abnormal miRNA expression, and that miRNA has played a key role in asthma, including in regulating the immune function, airway inflammation, and airway remodeling. Therefore, this article reviews the application of microRNA in asthma.


Asthma miRNA Biomarker Application 



3′-untranslated region


airway hyperresponsiveness


airway smooth muscle




brain-derived neurotrophic factor


bronchoalveolar lavage fluid


bronchial smooth muscle


diesel exhaust particles


enzyme-linked immune sorbent assay




forced expired volume in one second


forced vital capacity




glycogen synthase kinase-3β


house dust mite


Human Leucocyte Antigen G




IL-1 receptor associated kinase 1


Krüppel-like factor 4




Maf recognize elements




myeloid differentiation factor 88




nuclear factor kappa beta




peripheral blood mononuclear cells


polymerase Chain Reaction


programmed cell death protein 4


peak expiratory flow


phosphatidylinositol 3-hydroxy kinase


particulate matter


RNA-induced silencing complex


reverse transcription-polymerase chain reaction


runt-related transcription factor 3


sonic hedgehog


SH2-containing inositol 1


suppressor of signaling cytokine1


secreted phosphoprotein 1


small tenporal RNA


T-box expressed in T cells


T cell antigen receptor


Toll-like receptor 4


TNF receptor associated factor 6


Thymic stromal lymphopoietin


vascular endothelial growth factor


  1. 1.
    Haussecker D, Kay MA. miR-122 continues to blaze the trail for microRNA therapeutics. Mol Ther. 2010;18:240–2. [PubMed:20125164]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73. [PubMed:24275495]CrossRefPubMedGoogle Scholar
  3. 3.
    Friedman RC, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. [PubMed:18955434]CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Huo X, et al. Decreased epithelial and plasma miR-181b-5p expression associates with airway eosinophilic inflammation in asthma. Clin Exp Allergy. 2016;46:1281–90. [PubMed: 27192552]CrossRefPubMedGoogle Scholar
  5. 5.
    Elbehidy RM, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol. 2016;71:107–14. [PubMed: 26874829]CrossRefPubMedGoogle Scholar
  6. 6.
    Li JJ, Tay HL, Maltby S, et al. MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. J Allergy Clin Immunol. 2015;136:462–73. [PubMed: 25772595]CrossRefPubMedGoogle Scholar
  7. 7.
    Wu XB, et al. Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. Int J Clin Exp Med. 2014;7:1307–12. [PubMed: 24995087]PubMedPubMedCentralGoogle Scholar
  8. 8.
    Solberg OD, et al. Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med. 2012;186:965–74. [PubMed:22955319]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase–mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139:519–32. [PubMed: 2744e8447]CrossRefPubMedGoogle Scholar
  10. 10.
    Williams AE, Larner-Svensson H, Perry MM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS One. 2009;4:e5889. [PubMed:19521514]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Perry MM, Baker JE, Gibeon DS, et al. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol. 2014;50:7–17. [PubMed:23944957]PubMedPubMedCentralGoogle Scholar
  12. 12.
    Haj-Salem I, et al. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFbetaR2 gene in severe asthma. Allergy. 2015;70:212–9. [PubMed:25443138]CrossRefPubMedGoogle Scholar
  13. 13.
    Kho AT, et al. Circulating MicroRNAs: association with lung function in asthma. PLoS One. 2016;11:e0157998. [PubMed:27362794]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Roff AN, Craig TJ, August A, et al. MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells. Am J Clin Exp Immunol. 2014;3:68–83. [PubMed:25143867]PubMedPubMedCentralGoogle Scholar
  15. 15.
    Levänen B, Bhakta NR, Paredes PT, et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013;131:894–903. [PubMed:23333113]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Polikepahad S, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010;285:30139–49. [PubMed: 20630862]CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kumar M, et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol. 2011;128:1077–85. e1–10. [PubMed: 21616524]CrossRefPubMedGoogle Scholar
  18. 18.
    Mattes J, et al. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009;106:18704–9. [PubMed: 19843690]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sheedy FJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11:141–7. [PubMed: 19946272]CrossRefPubMedGoogle Scholar
  20. 20.
    Chiba Y, Misawa M. MicroRNAs and their therapeutic potential for human diseases: MiR-133a and bronchial smooth muscle hyperresponsiveness in asthma. J Pharmacol Sci. 2010;114:264–8. [PubMed: 20953121]CrossRefPubMedGoogle Scholar
  21. 21.
    Collison A, et al. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128:160–7. e4. [PubMed: 21571357]CrossRefPubMedGoogle Scholar
  22. 22.
    Takyar S, et al. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J Exp Med. 2013;210:1993–2010. [PubMed: 24043765]CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jardim MJ, et al. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol. 2012;47:536–42. [PubMed: 22679274]CrossRefPubMedGoogle Scholar
  24. 24.
    Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem. 2010;285:29336–47. [PubMed: 20525681]CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pagdin T, Lavender P. MicroRNAs in lung diseases. Thorax. 2012;67:183–4. [PubMed: 21836155]CrossRefPubMedGoogle Scholar
  26. 26.
    Radzikinas K, et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J Neurosci. 2011;31:15407–15. [PubMed: 22031887]CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Steiner DF, et al. MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity. 2011;35:169–81. [PubMed: 21820330]CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fan L, Wang X, Fan L, et al. MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients. Exp Lung Res. 2016;42:417–24. [PubMed: 27902892]CrossRefPubMedGoogle Scholar
  29. 29.
    Simpson LJ, Ansel KM. MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest. 2015;125:2242–9. [PubMed: 26030228]CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Panganiban RPL, Pinkerton MH, Maru SY, et al. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol. 2012;1:154. [PubMed: 23885321]PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sharma A, Kumar M, Ahmad T, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol. 2012;113:459–64. [PubMed: 22700801]CrossRefPubMedGoogle Scholar
  32. 32.
    Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182:4994. [PubMed:19342679]CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bleck B, Grunig G, Chiu A, et al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol. 2013;190:3757. [PubMed: 23455502]CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Panganiban RP, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016;137:1423–32. [PubMed:27025347]CrossRefPubMedGoogle Scholar
  35. 35.
    Maes T, et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol. 2016;137:1433–46. [PubMed:27155035]CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fang Chen
    • 1
  • Yan-Jing Qian
    • 1
  • Jia-Ying Zhang
    • 2
  • Fang Wang
    • 2
  • Ting-Ting Xia
    • 1
  1. 1.The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
  2. 2.First Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina

Personalised recommendations