Advertisement

Protein and Post Translational Modification in Asthma

  • Akram Safaei
  • Afsaneh Arefi OskouieEmail author
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 12)

Abstract

Asthma is a lung inflammation disease caused by a complex interaction between the immune system and environmental factors such as allergens. A lot of research is being done on discovering new proteins and post translational modification (PTM) associated with asthma pathogenesis. This chapter illustrates updated approaches in proteins and PTM detection and associating biomarkers of asthma. We focus on approaches such as Mass Spectrometry (MS), NMR, and microarray platforms. Concepts of protein and PTMs may provide new insights in searching potential clinical biomarkers in asthma.

Keywords

Asthma Protein Post translational modification (PTM) Mass spectrometry (MS) NMR 

References

  1. 1.
    Laitinen L, Heino M, Laitinen A, Kava T, Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma 1–3. Am Rev Respir Dis. 1985;131:599–606. [Pubmed: 3994155]PubMedGoogle Scholar
  2. 2.
    Lee J-Y, Park S-W, Chang HK, Kim HY, Rhim T, Lee J-H, et al. A disintegrin and metalloproteinase 33 protein in patients with asthma: relevance to airflow limitation. Am J Respir Crit Care Med. 2006;173(7):729–35. [Pubmed:16387804]PubMedCrossRefGoogle Scholar
  3. 3.
    Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol. 2004;22:789–815. [Pubmed:15032597]PubMedCrossRefGoogle Scholar
  4. 4.
    O’Neil SE, Sitkauskiene B, Babusyte A, Krisiukeniene A, Stravinskaite-Bieksiene K, Sakalauskas R, et al. Network analysis of quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment. Respir Res. 2011;12:124. [Pubmed:21939520]PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Park C-S, Rhim T. Application of proteomics in asthma research. Expert Rev Proteomics. 2011;8:221–30. [Pubmed:21501015]PubMedCrossRefGoogle Scholar
  6. 6.
    Huang Y, Min S, Lui Y, Sun J, Su X, Liu Y, et al. Global mapping of H3K4me3 and H3K27me3 reveals chromatin state-based regulation of human monocyte-derived dendritic cells in different environments. Genes Immun. 2012;13:311–20. [Pubmed:22278394]PubMedCrossRefGoogle Scholar
  7. 7.
    Cuddapah S, Barski A, Zhao K. Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol. 2010;22:341–7. [Pubmed:20226645]PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L, et al. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol. 2014;15:777–88. [Pubmed:24997565]PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hew M, Bhavsar P, Torrego A, Meah S, Khorasani N, Barnes PJ, et al. Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am J Respir Crit Care Med. 2006;174:134–41. [Pubmed:16614347]PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wang Z, DiDonato JA, Buffa J, Comhair SA, Aronica MA, Dweik RA, et al. Eosinophil peroxidase catalyzed protein carbamylation participates in asthma. J Biol Chem. 2016;291:22118–35. [Pubmed:27587397]PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Agache I, Akdis CA. Endotypes of allergic diseases and asthma: an important step in building blocks for the future of precision medicine. Allergol Int. 2016;65:243–52. [Pubmed:27282212]PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Toda M, Ono SJ. Genomics and proteomics of allergic disease. Immunology. 2002;106:1–10. [Pubmed:11972626]PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Baskin Y, Yigitbasi T. Clinical proteomics of breast cancer. Curr Genomics. 2010;11:528–36. [Pubmed:21532837]PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ahn SM, Simpson RJ. Body fluid proteomics: prospects for biomarker discovery. Proteomics Clin Appl. 2007;1:1004–15. [Pubmed:21136753]PubMedCrossRefGoogle Scholar
  15. 15.
    Plymoth A, Löfdahl CG, Ekberg-Jansson A, Dahlbäck M, Lindberg H, Fehniger TE, et al. Human bronchoalveolar lavage: biofluid analysis with special emphasis on sample preparation. Proteomics. 2003;3:962–72. [Pubmed:12833521]PubMedCrossRefGoogle Scholar
  16. 16.
    Lindahl M, Ståhlbom B, Tagesson C. Newly identified proteins in human nasal and bronchoalveolar lavage fluids: potential biomedical and clinical applications. Electrophoresis. 1999;20:3670–6. [Pubmed:10612294]PubMedCrossRefGoogle Scholar
  17. 17.
    Kim TH, Lee YH, Kim KH, Lee SH, Cha JY, Shin EK, et al. Role of lung apolipoprotein A-I in idiopathic pulmonary fibrosis: antiinflammatory and antifibrotic effect on experimental lung injury and fibrosis. Am J Respir Crit Care Med. 2010;182:633–42. [Pubmed:20463180]PubMedCrossRefGoogle Scholar
  18. 18.
    Murphy VE, Johnson RF, Wang Y-C, Akinsanya K, Gibson PG, Smith R, et al. The effect of maternal asthma on placental and cord blood protein profiles. J Soc Gynecol Investig. 2005;12:349–55. [Pubmed:15979547]PubMedCrossRefGoogle Scholar
  19. 19.
    Lee S-H, Rhim T, Choi Y-S, Min J-W, Kim S-H, Cho S-Y, et al. Complement C3a and C4a increased in plasma of patients with aspirin-induced asthma. Am J Respir Crit Care Med. 2006;173:370–8. [Pubmed:16293803]PubMedCrossRefGoogle Scholar
  20. 20.
    Samter M, Beers RF. Concerning the nature of intolerance to aspirin. J Allergy. 1967;40:281–93. [Pubmed:5235203]PubMedCrossRefGoogle Scholar
  21. 21.
    Szczeklik A, Gryglewski R, Czerniawska-Mysik G. Relationship of inhibition of prostaglandin biosynthesis by analgesics to asthma attacks in aspirin-sensitive patients. Br Med J. 1975;1:67–9. [Pubmed:1109660]PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, et al. Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest. 1998;101:834–46. [Pubmed:9466979]PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rhim T, Choi YS, Nam BY, Uh S, Park J, Kim YH, et al. Plasma protein profiles in early asthmatic responses to inhalation allergen challenge. Allergy. 2009;64:47–54. [Pubmed:19076930]PubMedCrossRefGoogle Scholar
  24. 24.
    Houtman R, Krijgsveld J, Kool M, Romijn EP, Redegeld FA, Nijkamp FP, et al. Lung proteome alterations in a mouse model for nonallergic asthma. Proteomics. 2003;3:2008–18. [Pubmed:14625863]PubMedCrossRefGoogle Scholar
  25. 25.
    Jeong H, Rhim T, Ahn M-H, Yoon P-O, Kim S-H, Chung IY, et al. Proteomic analysis of differently expressed proteins in a mouse model for allergic asthma. J Korean Med Sci. 2005;20:579–85. [Pubmed:16100449]PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Zhao J, Zhu H, Wong CH, Leung KY, Wong W. Increased lungkine and chitinase levels in allergic airway inflammation: a proteomics approach. Proteomics. 2005;5:2799–807. [Pubmed:15996009]PubMedCrossRefGoogle Scholar
  27. 27.
    Calvo FQ, Fillet M, De Seny D, Meuwis MA, Marée R, Crahay C, et al. Biomarker discovery in asthma-related inflammation and remodeling. Proteomics. 2009;9:2163–70. [Pubmed:19322781]PubMedCrossRefGoogle Scholar
  28. 28.
    Roh GS, Shin Y, Seo SW, Yoon BR, Yeo S, Park SJ, et al. Proteome analysis of differential protein expression in allergen-induced asthmatic mice lung after dexamethasone treatment. Proteomics. 2004;4:3318–27. [Pubmed:15378748]PubMedCrossRefGoogle Scholar
  29. 29.
    Liu H, Zhou L-F, Zhang Q, Qian F-H, Yin K-S, Huang M, et al. Increased RhoGDI~ 2 and peroxiredoxin 5 levels in asthmatic murine model of beta~ 2-adrenoceptor desensitization: a proteomics approach. Chin Med J. 2008;121:355–62. [Pubmed:18304470]PubMedGoogle Scholar
  30. 30.
    Zhu Z, Zheng T, Homer RJ, Kim Y-K, Chen NY, Cohn L, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–82. [Pubmed:15192232]PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou Y, Dong Q, Louahed J, Dragwa C, Savio D, Huang M, et al. Characterization of a calcium-activated chloride channel as a shared target of Th2 cytokine pathways and its potential involvement in asthma. Am J Respir Cell Mol Biol. 2001;25:486–91. [Pubmed:11694454]PubMedCrossRefGoogle Scholar
  32. 32.
    Michel O, Doyen V, Leroy B, Bopp B, Dinh DHP, Corazza F, et al. Expression of calgranulin A/B heterodimer after acute inhalation of endotoxin: proteomic approach and validation. BMC Pulm Med. 2013;13:65–72. [Pubmed:24237763]PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003;111:1863–74. [Pubmed:16100447]PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Shi O, Morris SM, Zoghbi H, Porter CW, O’Brien WE. Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. Mol Cell Biol. 2001;21:811–3. [Pubmed:11154268]PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Barnes FA, Bingle L, Bingle CD. Pulmonary genomics, proteomics, and PLUNCs. Am J Respir Cell Mol Biol. 2008;38:377–9. [Pubmed:17975173]PubMedCrossRefGoogle Scholar
  36. 36.
    Ghafouri B, Irander K, Lindbom J, Tagesson C, Lindahl M. Comparative proteomics of nasal fluid in seasonal allergic rhinitis. J Proteome Res. 2006;5:330–8. [Pubmed:16457599]PubMedCrossRefGoogle Scholar
  37. 37.
    Wu J, Kobayashi M, Sousa EA, Liu W, Cai J, Goldman SJ, et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol Cell Proteomics. 2005;4:1251–64. [Pubmed:15951573]PubMedCrossRefGoogle Scholar
  38. 38.
    North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol. 2009;296:L911–L20. [Pubmed:19286931]PubMedCrossRefGoogle Scholar
  39. 39.
    Greenlee KJ, Corry DB, Engler DA, Matsunami RK, Tessier P, Cook RG, et al. Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J Immunol. 2006;177:7312–21. [Pubmed:17082650]PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Louten J, Mattson JD, Malinao M-C, Li Y, Emson C, Vega F, et al. Biomarkers of disease and treatment in murine and cynomolgus models of chronic asthma. Biomark Insights. 2012;7:87–104. [Pubmed:22837640]PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lee T-H, Jang A-S, Park J-S, Kim T-H, Choi YS, Shin H-R, et al. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann Allergy Asthma Immunol. 2013;111:268–75. [Pubmed:24054362]PubMedCrossRefGoogle Scholar
  42. 42.
    Yan X, Chu J-H, Gomez J, Koenigs M, Holm C, He X, et al. Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am J Respir Crit Care Med. 2015;191:1116–25. [Pubmed:25763605]PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Candiano G, Bruschi M, Pedemonte N, Caci E, Liberatori S, Bini L, et al. Gelsolin secretion in interleukin-4–treated bronchial epithelia and in asthmatic airways. Am J Respir Crit Care Med. 2005;172:1090–6. [Pubmed:16100010]PubMedCrossRefGoogle Scholar
  44. 44.
    Larsen K, Macleod D, Nihlberg K, Gürcan E, Bjermer L, Marko-Varga G, et al. Specific haptoglobin expression in bronchoalveolar lavage during differentiation of circulating fibroblast progenitor cells in mild asthma. J Proteome Res. 2006;5:1479–83. [Pubmed:16739999]PubMedCrossRefGoogle Scholar
  45. 45.
    Jeong HC, Lee SY, Lee EJ, Jung KH, Kang EH, Lee SY, et al. Proteomic analysis of peripheral T-lymphocytes in patients with asthma. Chest. 2007;132:489–96. [Pubmed:17550934]PubMedCrossRefGoogle Scholar
  46. 46.
    Gray RD, MacGregor G, Noble D, Imrie M, Dewar M, Boyd AC, et al. Sputum proteomics in inflammatory and suppurative respiratory diseases. Am J Respir Crit Care Med. 2008;178:444–52. [Pubmed:18565957]PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hur G-Y, Choi G-S, Sheen S-S, Lee H-Y, Park H-J, Choi S-J, et al. Serum ferritin and transferrin levels as serologic markers of methylene diphenyl diisocyanate–induced occupational asthma. J Allergy Clin Immunol. 2008;122:774–80. [Pubmed:191014769]PubMedCrossRefGoogle Scholar
  48. 48.
    Gomes-Alves P, Imrie M, Gray RD, Nogueira P, Ciordia S, Pacheco P, et al. SELDI-TOF biomarker signatures for cystic fibrosis, asthma and chronic obstructive pulmonary disease. Clin Biochem. 2010;43:168–77. [Pubmed:19850022]PubMedCrossRefGoogle Scholar
  49. 49.
    Gharib SA, Nguyen EV, Lai Y, Plampin JD, Goodlett DR, Hallstrand TS. Induced sputum proteome in healthy subjects and asthmatic patients. J Allergy Clin Immunol. 2011;128:1176–84. [Pubmed:21906793]PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Verrills NM, Irwin JA, Yan He X, Wood LG, Powell H, Simpson JL, et al. Identification of novel diagnostic biomarkers for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183:1633–43. [Pubmed:21471098]PubMedCrossRefGoogle Scholar
  51. 51.
    Haenen S, Clynen E, Nemery B, Hoet PH, Vanoirbeek JA. Biomarker discovery in asthma and COPD: application of proteomics techniques in human and mice. EuPA Open Proteom. 2014;4:101–12.  https://doi.org/10.1016/j.euprot.2014.04.008 CrossRefGoogle Scholar
  52. 52.
    Karve TM, Cheema AK. Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids. 2011;2011:207691–9. [Pubmed:22312457]PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Walsh CT, Garneau-Tsodikova S, Gatto GJ. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Eng. 2005;44:7342–72. [Pubmed:16267872]CrossRefGoogle Scholar
  54. 54.
    Theillet F-X, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon M-K, et al. Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR. 2012;54:217–36. [Pubmed:23011410]PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Chou T-Y, Hart GW. O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc. The molecular immunology of complex carbohydrates—2. Adv Exp Med Biol. 2001;491:413–8. [Pubmed:14533811]PubMedCrossRefGoogle Scholar
  56. 56.
    Stenflo J, Fernlund P, Egan W, Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A. 1974;71:2730–3. [Pubmed:4528109]PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Nesvizhskii AI. Protein identification by tandem mass spectrometry and sequence database searching. Methods Mol Biol. 2007;367:87–119. [Pubmed:17185772]PubMedGoogle Scholar
  58. 58.
    Kuhn E, Addona T, Keshishian H, Burgess M, Mani D, Lee RT, et al. Developing multiplexed assays for troponin I and interleukin-33 in plasma by peptide immunoaffinity enrichment and targeted mass spectrometry. Clin Chem. 2009;55:1108–17. [Pubmed:19372185]PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Villén J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc. 2008;3:1630–8. [Pubmed:18833199]PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Gruhler A, Olsen JV, Mohammed S, Mortensen P, Færgeman NJ, Mann M, et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics. 2005;4:310–27. [Pubmed:15665377]PubMedCrossRefGoogle Scholar
  61. 61.
    Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids. 2012;43:1025–47. [Pubmed:22002794]PubMedCrossRefGoogle Scholar
  62. 62.
    Larsen MR, Trelle MB, Thingholm TE, Jensen ON. Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques. 2006;40:790–8. [Pubmed:16774123]PubMedCrossRefGoogle Scholar
  63. 63.
    Oberg AL, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res. 2009;8:2144–56. [Pubmed:19222236]PubMedCrossRefGoogle Scholar
  64. 64.
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207. [Pubmed:12634793]PubMedCrossRefGoogle Scholar
  65. 65.
    Cai W, Tucholski TM, Gregorich ZR, Ge Y. Top-down proteomics: technology advancements and applications to heart diseases. Expert Rev Proteomics. 2016;13:717–30. [Pubmed:27448560]PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Amunugama R, Jones R, Ford M, Allen D. Bottom-up mass spectrometry–based proteomics as an investigative analytical tool for discovery and quantification of proteins in biological samples. Adv Wound Care. 2013;2:549–57. [Pubmed:24761338]CrossRefGoogle Scholar
  67. 67.
    Zannetos S, Zachariadou T, Zachariades A, Georgiou A, Talias MA. The economic burden of adult asthma in Cyprus; a prevalence-based cost of illness study. BMC Public Health. 2017;17:262–71. [Pubmed:28302094]PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Giron P, Dayon L, Sanchez JC. Cysteine tagging for MS-based proteomics. Mass Spectrom Rev. 2011;30:366–95. [Pubmed:21500242]PubMedCrossRefGoogle Scholar
  69. 69.
    Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1:376–86. [Pubmed:12118079]PubMedCrossRefGoogle Scholar
  70. 70.
    Farley AR, Link AJ. Identification and quantification of protein posttranslational modifications. Methods Enzymol. 2009;463:725–63. [Pubmed:19892200]PubMedCrossRefGoogle Scholar
  71. 71.
    McLafferty FW, Horn DM, Breuker K, Ge Y, Lewis MA, Cerda B, et al. Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J Am Soc Mass Spectrom. 2001;12:245–9. [Pubmed:11281599]PubMedCrossRefGoogle Scholar
  72. 72.
    Wells JM, McLuckey SA. Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 2005;402:148–85. [Pubmed:16401509]PubMedCrossRefGoogle Scholar
  73. 73.
    Han J, Borchers CH. Top-down analysis of recombinant histone H3 and its methylated analogs by ESI/FT-ICR mass spectrometry. Proteomics. 2010;10(20):3621–30. [Pubmed:20486121]PubMedCrossRefGoogle Scholar
  74. 74.
    Catherman AD, Skinner OS, Kelleher NL. Top down proteomics: facts and perspectives. Biochem Biophys Res Commun. 2014;445:683–93. [Pubmed:24556311]PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Halim A, Carlsson MC, Madsen CB, Brand S, Moller SR, Olsen CE, et al. Glycoproteomic analysis of seven major allergenic proteins reveals novel post-translational modifications. Mol Cell Proteomics. 2015;14:191–204. [Pubmed:25389185]PubMedCrossRefGoogle Scholar
  76. 76.
    Safaei A, Rezaei-Tavirani M, Oskouie AA, Mohebbi SR, Shabani M, Sharifian A. Serum metabolic profiling of advanced cirrhosis based on HCV. Hepat Mon. 2017;17:e44431.CrossRefGoogle Scholar
  77. 77.
    Schubert M, Walczak MJ, Aebi M, Wider G. Posttranslational modifications of intact proteins detected by NMR spectroscopy: application to glycosylation. Angew Chem Int Ed Eng. 2015;127:7202–6. [Pubmed:25924827]CrossRefGoogle Scholar
  78. 78.
    Lu KP, Zhou XZ. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol. 2007;8:904–16. [Pubmed:17878917]PubMedCrossRefGoogle Scholar
  79. 79.
    Thomas MA, Buelow BJ, Nevins AM, Jones SE, Peterson FC, Gundry RL, et al. Structure-function analysis of CCL28 in the development of post-viral asthma. J Biol Chem. 2015;290:4528–36. [Pubmed:25556652]PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Espina V, Woodhouse EC, Wulfkuhle J, Asmussen HD, Petricoin EF, Liotta LA. Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods. 2004;290:121–33. [Pubmed:15261576]PubMedCrossRefGoogle Scholar
  81. 81.
    Berrade L, Garcia AE, Camarero JA. Protein microarrays: novel developments and applications. Pharm Res. 2011;28:1480–99. [Pubmed:21116694]PubMedCrossRefGoogle Scholar
  82. 82.
    Merbl Y, Kirschner MW. Protein microarrays for genome-wide posttranslational modification analysis. Wiley Interdiscip Rev Syst Biol Med. 2011;3:347–56. [Pubmed:20865779]PubMedCrossRefGoogle Scholar
  83. 83.
    Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003;111:1863–74. [Pubmed:12813022]PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kim H-B, Kim C-K, Iijima K, Kobayashi T, Kita H. Protein microarray analysis in patients with asthma: elevation of the chemokine PARC/CCL18 in sputum. Chest. 2009;135:295–302. [Pubmed:19017877]PubMedCrossRefGoogle Scholar
  85. 85.
    Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A. 2007;104:15858–63. [Pubmed:17898169]PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lee JH, Kaminski N, Dolganov G, Grunig G, Koth L, Solomon C, et al. Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types. Am J Respir Cell Mol Biol. 2001;25:474–85. [Pubmed:11694453]PubMedCrossRefGoogle Scholar
  87. 87.
    Yuyama N, Davies DE, Akaiwa M, Matsui K, Hamasaki Y, Suminami Y, et al. Analysis of novel disease-related genes in bronchial asthma. Cytokine. 2002;19:287–96. [Pubmed:12421571]PubMedCrossRefGoogle Scholar
  88. 88.
    Wang S-W, Oh CK, Cho SH, Hu G, Martin R, Demissie-Sanders S, et al. Amphiregulin expression in human mast cells and its effect on the primary human lung fibroblasts. J Allergy Clin Immunol. 2005;115:287–94. [Pubmed:15966083]PubMedCrossRefGoogle Scholar
  89. 89.
    Karp CL, Grupe A, Schadt E, Ewart SL, Keane-Moore M, Cuomo PJ, et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol. 2000;1:221–6. [Pubmed:10973279]PubMedCrossRefGoogle Scholar
  90. 90.
    Zou J, Young S, Zhu F, Gheyas F, Skeans S, Wan Y, et al. Microarray profile of differentially expressed genes in a monkey model of allergic asthma. Genome Biol. 2002;3(5):research0020. [Pubmed:12049661]PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Izuhara K, Saito H. Microarray-based identification of novel biomarkers in asthma. Allergol Int. 2006;55:361–7. [Pubmed:17130677]PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, et al. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol. 2006;118:98–104. [Pubmed:16815144]PubMedCrossRefGoogle Scholar
  93. 93.
    Barabasi A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13. [Pubmed:14735121]PubMedCrossRefGoogle Scholar
  94. 94.
    Peyvandi AA, Khoshsirat S, Safaei A, Rezaei-Tavirani M, Azodi-Zamanian M. Interactome analysis of 11-dehydrosinulariolide-treated oral carcinoma cell lines such as Ca9-22 and CAL-27 and melanoma cell line. Inter J Cancer Manag. 2017;10:e10096. http://ijcancerprevention.com/en/articles/10096.html
  95. 95.
    Safaei A, Tavirani MR, Azodi MZ, Lashay A, Mohammadi SF, Broumand MG, et al. Diabetic retinopathy and laser therapy in rats: a protein-protein interaction network analysis. J Lasers Med Sci. 2017;8:S20–1. [Pubmed:29071030]PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Abbaszadeh H-A, Peyvandi AA, Sadeghi Y, Safaei A, Zamanian-Azodi M, Khoramgah MS, et al. Er: YAG laser and cyclosporin A effect on cell cycle regulation of human gingival fibroblast cells. J Lasers Med Sci. 2017;8(3):143–9. [Pubmed:29123635]PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ardakani MJE, Safaei A, Oskouie AA, Haghparast H, Haghazali M, Shalmani HM, et al. Evaluation of liver cirrhosis and hepatocellular carcinoma using Protein-Protein Interaction Networks. Gastroenterol Hepatol Bed Bench. 2016;9:S14–22. [Pubmed:28224023]Google Scholar
  98. 98.
    Safaei A, Tavirani MR, Oskouei AA, Azodi MZ, Mohebbi SR, Nikzamir AR. Protein-protein interaction network analysis of cirrhosis liver disease. Gastroenterol Hepatol Bed Bench. 2016;9(2):114–23. [Pubmed:27099671]PubMedPubMedCentralGoogle Scholar
  99. 99.
    Kann MG. Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform. 2007;8:333–46. [Pubmed:17638813]PubMedCrossRefGoogle Scholar
  100. 100.
    Shoemaker BA, Panchenko AR, Bryant SH. Finding biologically relevant protein domain interactions: conserved binding mode analysis. Protein Sci. 2006;15:352–61. [Pubmed:16385001]PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Kuzmanov U, Emili A. Protein-protein interaction networks: probing disease mechanisms using model systems. Genome Med. 2013;5:37. [Pubmed:23635424]PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Chen Y, Qiao J. Protein–protein interaction network analysis and identifying regulation microRNAs in asthmatic children. Allergol Immunopathol. 2015;43:584–92. [Pubmed:25979194]CrossRefGoogle Scholar
  103. 103.
    Xu W. Expression data analysis to identify biomarkers associated with asthma in children. Int J Genomics. 2014;2014:165175. [Pubmed:24790987]PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Smith LD, Leatherbarrow RJ, Spivey AC. Development of small molecules to target the IgE: FcεRI protein–protein interaction in allergies. Future Med Chem. 2013;5:1423–35. [Pubmed:23919552]PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Proteomics Research CenterShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Faculty of Paramedical Sciences, Department of Basic SciencesShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations