UVA Irradiation of BrU-Substituted DNA in the Presence of Hoechst 33258

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Given that our knowledge of DNA repair is limited because of the complexity of the DNA system, a technique called UVA micro-irradiation has been developed that can be used to visualize the recruitment of DNA repair proteins at double-strand break (DSB) sites. Interestingly, Hoechst 33258 was used under micro-irradiation to sensitize 5-bromouracil (BrU)-labeled DNA, causing efficient DSBs. However, the molecular basis of DSB formation under UVA micro-irradiation remains unknown. Herein, we investigated the mechanism of DSB formation under UVA micro-irradiation conditions. Our results suggest that the generation of a uracil-5-yl radical through electron transfer from Hoechst 33258 to BrU caused DNA cleavage preferentially at self-complementary 5′-AABrUBrU-3′ sequences to induce DSB. We also investigated the DNA cleavage in the context of the nucleosome to gain a better understanding of UVA micro-irradiation in a cell-like model. We found that DNA cleavage occurred in both core and linker DNA regions although its efficiency reduced in core DNA.

Keywords

Micro-irradiation Electron transfer 5-Bromouracil DNA photoreaction Nucleosome 

References

  1. 1.
    Berns MW (1978) The laser microbeam as a probe for chromatin structure and function. Methods Cell Biol 18:277–294CrossRefGoogle Scholar
  2. 2.
    Cremer C, Cremer T (1986) Induction of chromosome shattering by ultraviolet light and caffeine: the influence of different distributions of photolesions. Mutat Res 163:33–40CrossRefGoogle Scholar
  3. 3.
    Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967.  https://doi.org/10.1038/nrc2523 CrossRefGoogle Scholar
  4. 4.
    Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694CrossRefGoogle Scholar
  5. 5.
    FitzGerald JE, Grenon M, Lowndes NF (2009) 53BP1: function and mechanisms of focal recruitment. Biochem Soc Trans 37:897–904.  https://doi.org/10.1042/BST0370897 CrossRefGoogle Scholar
  6. 6.
    Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254.  https://doi.org/10.1038/nrm2651 CrossRefGoogle Scholar
  7. 7.
    Stucki M, Jackson SP (2006) gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 5:534–543.  https://doi.org/10.1016/j.dnarep.2006.01.012 CrossRefGoogle Scholar
  8. 8.
    Benjdia A, Heil K, Barends TR, Carell T, Schlichting I (2012) Structural insights into recognition and repair of UV-DNA damage by spore photoproduct lyase, a radical SAM enzyme. Nucleic Acids Res 40:9308–9318.  https://doi.org/10.1093/nar/gks603 CrossRefGoogle Scholar
  9. 9.
    Fei J, Kaczmarek N, Luch A, Glas A, Carell T, Naegeli H (2011) Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biol 9:e1001183.  https://doi.org/10.1371/journal.pbio.1001183 CrossRefGoogle Scholar
  10. 10.
    Limoli CL, Ward JF (1993) A new method for introducing double-strand breaks into cellular DNA. Radiat Res 134:160–169.  https://doi.org/10.2307/3578455 CrossRefGoogle Scholar
  11. 11.
    Suzuki K, Yamauchi M, Oka Y, Suzuki M, Yamashita S (2011) Creating localized DNA double-strand breaks with microirradiation. Nat Protoc 6:134–139.  https://doi.org/10.1038/nprot.2010.183 CrossRefGoogle Scholar
  12. 12.
    Walter J, Cremer T, Miyagawa K, Tashiro S (2003) A new system for laser-UVA-microirradiation of living cells. J Microsc 209:71–75Google Scholar
  13. 13.
    Beishline K, Kelly CM, Olofsson BA, Koduri S, Emrich J, Greenberg RA, Azizkhan-Clifford J (2012) Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism. J Mol Cell Biol 32:3790–3799.  https://doi.org/10.1128/MCB.00049-12 CrossRefGoogle Scholar
  14. 14.
    Harshman KD, Dervan PB (1985) Molecular recognition of B-DNA by Hoechst 33258. Nucleic Acids Res 13:4825–4835CrossRefGoogle Scholar
  15. 15.
    Breusegem SY, Clegg RM, Loontiens FG (2002) Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex. J Mol Biol 315:1049–1061.  https://doi.org/10.1006/jmbi.2001.5301 CrossRefGoogle Scholar
  16. 16.
    Hashiya F, Saha A, Kizaki S, Li Y, Sugiyama H (2014) Locating the uracil-5-yl radical formed upon photoirradiation of 5-bromouracil-substituted DNA. Nucleic Acids Res 42:13469–13473.  https://doi.org/10.1093/nar/gku1133 CrossRefGoogle Scholar
  17. 17.
    Saha A, Kizaki S, De D, Endo M, Kim KK, Sugiyama H (2016) Examining cooperative binding of Sox2 on DC5 regulatory element upon complex formation with Pax6 through excess electron transfer assay. Nucleic Acids Res 44:e125.  https://doi.org/10.1093/nar/gkw478 CrossRefGoogle Scholar
  18. 18.
    Sugiyama H, Fujimoto K, Saito I (1996) Evidence for intrastrand C2’ hydrogen abstraction in photoirradiation of 5-halouracil-containing oligonucleotides by using stereospecifically C2’-deuterated deoxyadenosine. Tetrahedron Lett 37:1805–1808.  https://doi.org/10.1016/0040-4039(96)00123-2 CrossRefGoogle Scholar
  19. 19.
    Morinaga H, Takenaka T, Hashiya F, Kizaki S, Hashiya K, Bando T, Sugiyama H (2013) Sequence-specific electron injection into DNA from an intermolecular electron donor. Nucleic Acids Res 41:4724–4728.  https://doi.org/10.1093/nar/gkt123 CrossRefGoogle Scholar
  20. 20.
    Sugiyama H, Tsutsumi Y, Fujimoto K, Saito I (1993) Photoinduced deoxyribose C2’ oxidation in DNA. Alkali-dependent cleavage of erythrose-containing sites via a retroaldol reaction. J Am Chem Soc 115:4443–4448.  https://doi.org/10.1021/ja00064a004 CrossRefGoogle Scholar
  21. 21.
    Paul A, Nanjunda R, Kumar A, Laughlin S, Nhili R, Depauw S, Deuser SS, Chai Y, Chaudhary AS, David-Cordonnier MH, Boykin DW, Wilson WD (2015) Mixed up minor groove binders: convincing A·T specific compounds to recognize a G·C base pair. Bioorg Med Chem Lett 25:4927–4932.  https://doi.org/10.1016/j.bmcl.2015.05.005 CrossRefGoogle Scholar
  22. 22.
    Harika NK, Paul A, Stroeva E, Chai Y, Boykin DW, Germann MW, Wilson WD (2016) Imino proton NMR guides the reprogramming of A T specific minor groove binders for mixed base pair recognition. Nucleic Acids Res 44:4519–4527.  https://doi.org/10.1093/nar/gkw353 CrossRefGoogle Scholar
  23. 23.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294CrossRefGoogle Scholar
  24. 24.
    Vasudevan D, Chua EY, Davey CA (2010) Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J Mol Biol 403:1–10.  https://doi.org/10.1016/j.jmb.2010.08.039 CrossRefGoogle Scholar
  25. 25.
    Leslie KD, Fox KR (2002) Interaction of Hoechst 33258 and echinomycin with nucleosomal DNA fragments containing isolated ligand binding sites. Biochemistry 41:3484–3497CrossRefGoogle Scholar
  26. 26.
    Zou T, Kizaki S, Pandian GN, Sugiyama H (2016) Nucleosome assembly alters the accessibility of the antitumor agent duocarmycin B2 to duplex DNA. Chem Eur J 22:8756–8758.  https://doi.org/10.1002/chem.201600950 CrossRefGoogle Scholar
  27. 27.
    Kizaki S, Zou T, Li Y, Han YW, Suzuki Y, Harada Y, Sugiyama H (2016) Preferential 5-methylcytosine oxidation in the linker region of reconstituted positioned nucleosomes by tet1 protein. Chem Eur J 22:16598–16601.  https://doi.org/10.1002/chem.201602435 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute CurieOrsayFrance

Personalised recommendations