Persistence of the Uncanny Valley

  • Jakub A.  Złotowski
  • Hidenobu Sumioka
  • Shuichi NishioEmail author
  • Dylan F. Glas
  • Christoph Bartneck
  • Hiroshi Ishiguro


In recent years, the uncanny valley theory has been heavily investigated by researchers from various fields. However, the videos and images used in these studies do not permit any human interaction with the uncanny objects. Therefore, in the field of human–robot interaction, it is still unclear what impact, if any, an uncanny-looking robot will have in the context of an interaction. In this paper, we describe an exploratory empirical study using a live interaction paradigm that involves repeated interactions with robots that differ in embodiment and their attitude toward humans. We find that both components of uncanniness investigated here (likeability and eeriness) can be affected by an interaction with a robot. The likeability of a robot is mainly affected by its attitude, and this effect is especially prominent for a machinelike robot. Merely repeating interactions is sufficient to reduce the degree of eeriness, irrespective of a robot’s embodiment. As a result, we urge other researchers to investigate the uncanny valley theory in studies that involve actual human–robot interactions in order to fully understand the changing nature of this phenomenon.


Uncanny valley Anthropomorphism Human–robot interaction Multiple interactions Eeriness Likeability Dehumanization 



This work was partially supported by Grant-in Aid for Scientific Research (S), KAKENHI (25220004) and JST CREST (Core Research of Evolutional Science and Technology) research promotion program “Creation of Human-Harmonized Information Technology for Convivial Society” Research Area. The authors would like to thank Kaiko Kuwamura, Daisuke Nakamichi, Junya Nakanishi, and Kurima Sakai for their help with data collection.


  1. 1.
    Złotowski, J.A., H. Sumioka, S. Nishio, D.F. Glas, C. Bartneck, and H. Ishiguro. 2015. Persistence of the uncanny valley: The influence of repeated interactions and a robot’s attitude on its perception. Frontiers in Psychology 6: 883.CrossRefGoogle Scholar
  2. 2.
    Mori, M. 1970. The uncanny valley. Energy 7 (4): 33–35.Google Scholar
  3. 3.
    Blow, M., K. Dautenhahn, A. Appleby, C. Nehaniv, and D. Lee. 2006. Perception of robot smiles and dimensions for human-robot interaction design. In The 15th IEEE international symposium on robot and human interactive communication, 2006. ROMAN 2006, 469–474.Google Scholar
  4. 4.
    Hanson, D. 2006. Exploring the aesthetic range for humanoid robots. In Proceedings of the ICCS/CogSci-2006 long symposium: Toward social mechanisms of android science, 39–42.Google Scholar
  5. 5.
    MacDorman, K.F. 2006. Subjective ratings of robot video clips for human likeness, familiarity, and eeriness: An exploration of the uncanny valley. In ICCS/CogSci-2006 long symposium: Toward social mechanisms of android science, 26–29.Google Scholar
  6. 6.
    McDonnell, R., M. Breidt, and H.H. Bälthoff. 2012. Render me real?: Investigating the effect of render style on the perception of animated virtual humans. ACM Transactions on Graphics 31 (4): 91:1–91:11.CrossRefGoogle Scholar
  7. 7.
    MacDorman, K.F., R.D. Green, C.-C. Ho, and C.T. Koch. 2009. Too real for comfort? uncanny responses to computer generated faces. Computers in Human Behavior 25 (3): 695–710.CrossRefGoogle Scholar
  8. 8.
    Seyama, J., and R.S. Nagayama. 2007. The uncanny valley: Effect of realism on the impression of artificial human faces. Presence: Teleoperators and Virtual Environments 16 (4): 337–351.CrossRefGoogle Scholar
  9. 9.
    Mitchell, W.J., K.A. Szerszen, A.S. Lu, P.W. Schermerhorn, M. Scheutz, and K.F. MacDorman. 2011. A mismatch in the human realism of face and voice produces an uncanny valley. i-Perception 2 (1): 10–12.CrossRefGoogle Scholar
  10. 10.
    Saygin, A.P., T. Chaminade, H. Ishiguro, J. Driver, and C. Frith. 2012. The thing that should not be: Predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience 7 (4): 413–422.CrossRefGoogle Scholar
  11. 11.
    Piwek, L., L.S. McKay, and F.E. Pollick. 2014. Empirical evaluation of the uncanny valley hypothesis fails to confirm the predicted effect of motion. Cognition 130 (3): 271–277.CrossRefGoogle Scholar
  12. 12.
    Steckenfinger, S.A., and A.A. Ghazanfar. 2009. Monkey visual behavior falls into the uncanny valley. Proceedings of the National Academy of Sciences 106 (43): 18362–18366.CrossRefGoogle Scholar
  13. 13.
    MacDorman, K.F., P. Srinivas, and H. Patel. 2013. The uncanny valley does not interfere with level 1 visual perspective taking. Computers in Human Behavior 29 (4): 16711685.CrossRefGoogle Scholar
  14. 14.
    Gray, K., and D. Wegner. 2012. Feeling robots and human zombies: Mind perception and the uncanny valley. Cognition 125 (1): 125–130.CrossRefGoogle Scholar
  15. 15.
    MacDorman, K.F., and H. Ishiguro. 2006. The uncanny advantage of using androids in cognitive and social science research. Interaction Studies 7 (3): 297–337.CrossRefGoogle Scholar
  16. 16.
    Moore, R.K. 2012. A bayesian explanation of the ‘Uncanny valley’ effect and related psychological phenomena. Scientific Reports 2.Google Scholar
  17. 17.
    Cheetham, M., P. Suter, and L. Jancke. 2014. Perceptual discrimination difficulty and familiarity in the uncanny valley: More like a happy valley. Frontiers in Psychology 5.Google Scholar
  18. 18.
    Looser, C.E., and T. Wheatley. 2010. The tipping point of animacy how, when, and where we perceive life in a face. Psychological Science 21 (12): 1854–1862.CrossRefGoogle Scholar
  19. 19.
    Poliakoff, E., N. Beach, R. Best, T. Howard, and E. Gowen. 2013. Can looking at a hand make your skin crawl? peering into the uncanny valley for hands. Perception 42 (9): 998–1000.CrossRefGoogle Scholar
  20. 20.
    Bartneck, C., T. Kanda, H. Ishiguro, and N. Hagita. 2009. My robotic doppelganger—A critical look at the uncanny valley theory. In 18th IEEE international symposium on robot and human interactive communication, RO-MAN2009, 269–276. IEEE.Google Scholar
  21. 21.
    Mori, M., K.F. MacDorman, and N. Kageki. 2012. The uncanny valley. IEEE Robotics and Automation Magazine 19 (2): 98–100.CrossRefGoogle Scholar
  22. 22.
    Ho, C., and K. MacDorman. 2010. Revisiting the uncanny valley theory: Developing and validating an alternative to the godspeed indices. Computers in Human Behavior 26 (6): 1508–1518.CrossRefGoogle Scholar
  23. 23.
    Misselhorn, C. 2009. Empathy with inanimate objects and the uncanny valley. Minds and Machines 19 (3): 345–359.CrossRefGoogle Scholar
  24. 24.
    Cheetham, M., P. Suter, and L. Jancke. 2011. The human likeness dimension of the “Uncanny valley hypothesis”: Behavioral and functional MRI findings. Frontiers in Human Neuroscience 5.Google Scholar
  25. 25.
    Bartneck, C., T. Kanda, H. Ishiguro, and N. Hagita. 2007. Is the uncanny valley an uncanny cliff? In Proceedings—IEEE international workshop on robot and human interactive communication, 368–373, Jeju, Republic of Korea.Google Scholar
  26. 26.
    Kiesler, S., A. Powers, S.R. Fussell, and C. Torrey. 2008. Anthropomorphic interactions with a robot and robot-like agent. Social Cognition 26 (2): 169–181.CrossRefGoogle Scholar
  27. 27.
    Fussell, S.R., S. Kiesler, L.D. Setlock, and V. Yew. 2008. How people anthropomorphize robots. In HRI 2008—Proceedings of the 3rd ACM/IEEE international conference on human-robot interaction: Living with robots, 145–152, Amsterdam, Netherlands.Google Scholar
  28. 28.
    Becker-Asano, C., K. Ogawa, S. Nishio, and H. Ishiguro. 2010. Exploring the uncanny valley with geminoid HI-1 in a real-world application. In Proceedings of the IADIS international conference on interfaces and human computer interaction 2010, IHCI, proceedings of the IADIS international conference on game and entertainment technologies 2010, part of the MCCSIS 2010, 121–128, Freiburg, Germany.Google Scholar
  29. 29.
    von der Pütten, A.M., N.C. Krämer, C. Becker-Asano, and H. Ishiguro. 2011. An android in the field. In Proceedings of the 6th international conference on Human-robot interaction, HRI ’11, 283–284, New York, NY, USA. ACM.Google Scholar
  30. 30.
     Dill, V., L.M. Flach, R. Hocevar, C. Lykawka, S.R. Musse, and M.S. Pinho. 2012. Evaluation of the uncanny valley in CG characters. In 12th international conference on intelligent virtual agents, IVA 2012, September 12, 2012–September 14, 2012, vol. 7502 LNAI, 511–513. Springer.CrossRefGoogle Scholar
  31. 31.
    Zajonc, R.B. 1968. Attitudinal effects of mere exposure. Journal of Personality and Social Psychology 9 (2p2): 1.CrossRefGoogle Scholar
  32. 32.
    Dijksterhuis, A., and P.K. Smith. 2002. Affective habituation: Subliminal exposure to extreme stimuli decreases their extremity. Emotion 2 (3): 203.CrossRefGoogle Scholar
  33. 33.
    Ebbesen, E.B., G.L. Kjos, and V.J. Konečni. 1976. Spatial ecology: Its effects on the choice of friends and enemies. Journal of Experimental Social Psychology 12 (6): 505–518.CrossRefGoogle Scholar
  34. 34.
    Perlman, D., and S. Oskamp. 1971. The effects of picture content and exposure frequency on evaluations of negroes and whites. Journal of Experimental Social Psychology 7 (5): 503–514.CrossRefGoogle Scholar
  35. 35.
    Brockner, J., and W.C. Swap. 1976. Effects of repeated exposure and attitudinal similarity on self-disclosure and interpersonal attraction. Journal of Personality and Social Psychology 33 (5): 531–540.CrossRefGoogle Scholar
  36. 36.
    Brickman, P., P. Meyer, and S. Fredd. 1975. Effects of varying exposure to another person with familiar or unfamiliar thought processes. Journal of Experimental Social Psychology 11 (3): 261–270.CrossRefGoogle Scholar
  37. 37.
    Bornstein, R.F., and P.R. D’Agostino. 1994. The attribution and discounting of perceptual fluency: Preliminary tests of a perceptual fluency/attributional model of the mere exposure effect. Social Cognition 12 (2): 103–128.CrossRefGoogle Scholar
  38. 38.
    Reber, R., P. Winkielman, and N. Schwarz. 1998. Effects of perceptual fluency on affective judgments. Psychological Science 9 (1): 45–48.CrossRefGoogle Scholar
  39. 39.
    Lee, A.Y. 2001. The mere exposure effect: An uncertainty reduction explanation revisited. Personality and Social Psychology Bulletin 27 (10): 1255–1266.CrossRefGoogle Scholar
  40. 40.
    Clark, L.A., and D. Watson. 1988. Mood and the mundane: Relations between daily life events and self-reported mood. Journal of Personality and Social Psychology 54 (2): 296–308.CrossRefGoogle Scholar
  41. 41.
    Denrell, J. 2005. Why most people disapprove of me: Experience sampling in impression formation. Psychological Review 112 (4): 951–978.CrossRefGoogle Scholar
  42. 42.
    Reis, H.T., M.R. Maniaci, P.A. Caprariello, P.W. Eastwick, and E.J. Finkel. 2011. Familiarity does indeed promote attraction in live interaction. Journal of Personality and Social Psychology 101 (3): 557–570.CrossRefGoogle Scholar
  43. 43.
    Bornstein, R.F. 1989. Exposure and affect: Overview and meta-analysis of research, 1968–1987. Psychological Bulletin 106 (2): 265–289.CrossRefGoogle Scholar
  44. 44.
    Norton, M.I., J.H. Frost, and D. Ariely. 2007. Less is more: The lure of ambiguity, or why familiarity breeds contempt. Journal of Personality and Social Psychology 92 (1): 97–105.CrossRefGoogle Scholar
  45. 45.
    Smith, E.R., and D.M. Mackie. 2007. Social psychology, 3rd ed, Jan. New York: Psychology Press.Google Scholar
  46. 46.
     Goetz, J., S. Kiesler, and A. Powers. 2003. Matching robot appearance and behavior to tasks to improve human-robot cooperation. In ROMAN 2003. The 12th IEEE international workshop on robot and human interactive communication, 55–60.Google Scholar
  47. 47.
    De Houwer, J., S. Teige-Mocigemba, A. Spruyt, and A. Moors. 2009. Implicit measures: A normative analysis and review. Psychological Bulletin 135 (3): 347–368.CrossRefGoogle Scholar
  48. 48.
    Steffens, M.C., and S. Schulze. 2006. König. Predicting spontaneous big five behavior with implicit association tests. European Journal of Psychological Assessment 22 (1): 13–20.CrossRefGoogle Scholar
  49. 49.
    Admoni, H., and B. Scassellati. 2012. A multi-category theory of intention. In Proceedings of COGSCI 2012, 1266–1271, Sapporo, Japan.Google Scholar
  50. 50.
    Gawronski, B. 2002. What does the implicit association test measure? a test of the convergent and discriminant validity of prejudice-related IATs. Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie) 49 (3): 171–180.CrossRefGoogle Scholar
  51. 51.
    Złotowski, J., E. Strasser, and C. Bartneck. 2014. Dimensions of anthropomorphism: From humanness to humanlikeness. In Proceedings of the 2014 ACM/IEEE international conference on human-robot interaction, HRI ’14, 66–73, New York, NY, USA. ACM.Google Scholar
  52. 52.
    Haslam, N. 2006. Dehumanization: An integrative review. Personality and Social Psychology Review 10 (3): 252–264.CrossRefGoogle Scholar
  53. 53.
     Haslam, N., B. Bastian, S. Laham, and S. Loughnan. 2012. Humanness, dehumanization, and moral psychology.Google Scholar
  54. 54.
    Sriram, N., and A.G. Greenwald. 2009. The brief implicit association test. Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie) 56 (4): 283–294.CrossRefGoogle Scholar
  55. 55.
    Ishiguro, H. 2006. Android science: Conscious and subconscious recognition. Connection Science 18 (4): 319–332.CrossRefGoogle Scholar
  56. 56.
    Rosenthal-von der Pütten, A.M., and N.C. Krämer. 2014. How design characteristics of robots determine evaluation and uncanny valley related responses. Computers in Human Behavior 36: 422–439.CrossRefGoogle Scholar
  57. 57.
    Bartneck, C., D. Kulic, E. Croft, and S. Zoghbi. 2009. Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics 1 (1): 71–81.CrossRefGoogle Scholar
  58. 58.
    Haslam, N., S. Loughnan, Y. Kashima, and P. Bain. 2009. Attributing and denying humanness to others. European Review of Social Psychology 19 (1): 55–85.CrossRefGoogle Scholar
  59. 59.
    Nunnally, J. 1978. Psychometric methods. New York: McGraw.Google Scholar
  60. 60.
    Wheeler, B. 2010. lmPerm: Permutation tests for linear models. R package version 1.1-2.Google Scholar
  61. 61.
    R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jakub A.  Złotowski
    • 1
    • 2
  • Hidenobu Sumioka
    • 2
  • Shuichi Nishio
    • 2
    Email author
  • Dylan F. Glas
    • 2
  • Christoph Bartneck
    • 3
  • Hiroshi Ishiguro
    • 2
    • 4
  1. 1.CITEC Center of Excellence Cognitive Interaction TechnologyBielefeld UniversityBielefeldGermany
  2. 2.Advanced Telecommunications Research Institute InternationalKyotoJapan
  3. 3.Human Interface Technology Laboratory New ZealandUniversity of CanterburyChristchurchNew Zealand
  4. 4.Department of Systems InnovationGraduate School of Engineering Science, Osaka UniversityOsakaJapan

Personalised recommendations